Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Пример 5.4.3-1.





Рассмотрим пример решения матричной игры методом линейного программирования. Вернемся к примеру игры двух участников с нулевой суммой, платежная матрица которой приведена на рис.5.3.1-2:

.

Эта игра не имеет седловой точки, поэтому решение игры следует искать в смешанных стратегиях. Значение цены игры должно находится между -2 (минимум строк) и 4 (максимум столбцов).

Задача линейного программирования для игрока А.

Максимизировать z = v

при ограничениях

Из системы ограничений можно исключить переменную x2 и перейти к задаче с двумя оптимизируемыми переменными z и v.

Максимизировать z = v

при ограничениях

На рис.5.4.3-1 приведен графический способ решения задачи линейного программирования. Цифрами обозначены графики линейных функций, представляющих собой границы областей, в пределах которых выполняются соответствующие ограничения-неравенства. Стрелками показаны направления внутрь областей.

v

Согласно полученному решению игрок А должен выбирать свою первую стратегию с вероятностью , а вторую – с вероятностью . Цена игры при выборе первым игроком такой смешанной стратегии может быть определена с помощью любого из активных ограничений:

Задача линейного программирования для игрока А.

Максимизировать z = v

при ограничениях

Для решения сформулированной задачи линейного программирования воспользуемся системой компьютерной математики Mathcad. Встроенная функция Minimize реализует достаточно универсальный алгоритм оптимизации не требующий вычисления производных. На рис.5.4.3-2 приведено решение поставленной задачи с соответствующим описанием ее постановки.

Оптимальным решением, полученным с помощью программы, является смешанная стратегия y1 = 0,412, y2= 0,588, y3 = 0. Ей соответствует цена игры v = 1,294, т.е. решения полученные игроком А и игроком В дают одинаковую цену игры, что соответствует теореме о минимаксе. Кроме того известно, что в игре 2×n каждый из участников может располагать не более чем двумя активными стратегиями. Равенство нулю вероятности y3 означает, что третья стратегия не является активной и участнику В не следует использовать ее в данной игре. Последний результат подтверждается и графическим решением задачи линейного программирования для игрока А: точка максимума целевой функции не принадлежит прямой (3), соответствующей третей чистой стратегии игрока В.







Дата добавления: 2015-08-17; просмотров: 494. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия