Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Смешанные стратегии





До сих пор мы не затрагивали вопроса существования ситуаций равновесия в произ­вольной биматричной игре; между тем, как видно из простейших примеров, ситуаций равновесия может и не быть.

Выход из этого положения был найден довольно неожиданный: вводится новый способ выбора стратегий, состоящий в том, что стратегии выбираются не путем их явного указания, а случайным образом, но так, чтобы каждая стратегия имела определенную вероятность быть выбранной.

Пусть, например, множество, из которого производится выбор, состоит из трех элементов: X={x1,x2,x3}, при этом вероятность выбора x1 равна 1/2, вероятность выбора x2 равна 1/3 и вероятность выбора x3 равна 1/6. Рассмотрим физический механизм, представляющий собой свободно вращающуюся вокруг неподвижной оси стрелку, а окружность разбита на три дуги x1,x2,x3, длины которых пропорциональны числам 1/2, 1/3, 1/6 (рис.5.3). Если придать стрелке вращение, то вероятность того, что она остановится в секторе x1,x2,x3, равна соответственно 1/2, 1/3, 1/6. Таким образом, данный механизм реализует случайный выбор элементов x1,x2,x3 с вероятностями соответственно 1/2, 1/3, 1/6.

Рассмотрим теперь биматричную игру, в которой

X={x1,…,xn}– множество стратегий игрока 1,

Y={y1,…,ym}– множество стратегий игрока 2,

fk – функция выигрыша игрока k=l, 2.

Пусть игрок 1 производит выбор своей стратегии случайно, причем вероятность выбора стратегии xi равна . Тогда можно считать, что он производит выбор (но уже неслучайно!) системы неотрицательных чисел .Такая система чисел носит название смешанной стратегии.

Таким образом, допущение случайного выбора игроками своих стратегий означает фактически замену первоначальных множеств стратегий игроков множествами смешанных стратегий.

Пусть игрок 1 выбрал смешанную стратегию p=(p1,…,pn), а игрок 2 – смешанную стратегию q=(q1,…,qm). Если игроки производят свой выбор независимо друг от друга, тогда вероятность того, что одновременно игрок 1 выберет стратегию xi, а игрок 2 – стратегию yj,т. е. вероятность ситуации (xi, уj), равна произведению pi×qj, причем в этой ситуации игрок 1 получает выигрыш f1(xi, уj), а игрок 2 – выигрыш f2(xi, уj). В качестве выигрышей игроков при выборе ими смешанных стратегий р и q берутся математические ожидания:

для игрока 1

,

для игрока 2

.

В итоге мы получаем новую игру, в которой стратегиями игроков являются их смешанные стратегии, М и N – функции выигрыша. Такая игра носит название смешанного расширения первоначальной игры. Одним из основные результатов теории игр является доказанная в 1951 г. американским математиком Дж. Нэшем теорема, согласно которой для всякой биматричной игры существует ситуация равновесия в ее смешанном расширении.







Дата добавления: 2015-08-17; просмотров: 489. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия