Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Почти антагонистические игры





Биматричная игра называется почти антагонистической, если при переходе от одной ситуации к другой увеличение выигрыша одного из игроков сопровож­дается уменьшением выигрыша другого:

.

Множество ситуаций равновесия почти антагонистической игры обладает следующим важным свойством: во-первых, оно является прямоугольным и, во-вторых, для каждого из игроков его выигрыш в любой ситуации равновесия один и тот же.

Действитель­но, пусть и – две ситуации равновесия почти антагонистиче­ской игры. Рассмотрим часть таблицы игры, образованную строками i1,i2 и столбцами j1, j2 (табл.6.4). Так как – ситуация равновесия, то , а значит, по условию почти антагонистичности . Далее, так как – ситуация равновесия, то . Получаем , откуда . Но ввиду равноправия ситуаций и выполняется и обратное неравенство поэтому . Аналогично Получаем, что ситуация равновесия, причем выигрыши игроков в этой ситуации те же, что и в ситуации равновесия . Таким образом, сформулированное выше свойство ситуаций равновесия почти антагонистической игры доказано.

Таблица 6.4. Матрица почти антагонистической игры

 
   
   

Предположим теперь, что игрок 1 использует стратегию , являющуюся первой компонентой ситуации равновесия. Тогда для любого j=l,...,m выполняется и по определению почти антагонистиче­ской игры Но, как мы знаем, выигрыш игрока в ситуации равновесия не меньше, чем его максимин, поэтому, обозначая , получаем .

Полученное неравенство означает, что в почти антагонистической игре применение игроком стратегии, являющейся компонентой ситуации равновесия, гарантирует ему по крайней мере его максимин.







Дата добавления: 2015-08-17; просмотров: 385. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.016 сек.) русская версия | украинская версия