Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Оптимальное решение игры двух лиц с нулевой суммой





Поскольку игры берут свое начало в конфликте интересов, оптимальным решением игры является одна или несколько таких стратегий для каждого из игроков, при которых любое отклонение от выбранных стратегий не улучшает плату тому или другому игроку. { Односторонне отклонение от выбранных стратегий не улучшает плату отошедшему от оптимальной стратегии игроку}

В качестве основного допущения в теории игр двух лиц с нулевой суммой принимается, что каждый игрок стремится обеспечить себе максимально возможный выигрыш при любых действиях противника. Однако наибольший гарантированный выигрыш определяется при том условии, что избранная данным игроком стратегия становится изве­стной противнику, который затем выбирает свою опти­мальную стратегию. Пусть игрок А считает, что, какую бы строку он ни выбрал, игрок В выберет столбец, максимизи­рующий его выигрыш и тем самым минимизирующий выигрыш игрока А. Тогда можно исключить из платежной матрицы все элементы, оставив в каждой строке только по одному элементу, соответствующему минимальному платежу. Оптимальная стратегия игрока А, которая обес­печит ему наибольший из возможных выигрышей вне зави­симости от стратегии противника, будет состоять в выборе строки с самым высоким из таких минимальных платежей. Таким образом, игрок А выбирает i-ю стратегию, которая является решением задачи

.

Стратегия, соответствующая максимальному значению минимумов строк, является максиминной стратегией.

Игрок В точно так же стремится обеспечить себе наивыс­шую величину выигрыша (т. е. наименьшее значение пла­тежа своему противнику) вне зависимости от стратегии, избираемой партнером. Следовательно, игрок В может исключить из платежной матрицы все элементы, оставив в столбце только по одному элементу, соответствующему максимальному платежу. Его оптимальной стратегией будет столбец с наименьшим значением максимального платежа. Таким образом, игрок В выбирает j-ю стратегию, которая является решением задачи

.

Стратегия, соответствующая минимальному значению мак­симумов столбцов, называется минимаксной стратегией.

Если игрок A придерживается максиминной стратегии, то его выигрыш будет не меньше максиминного значения, т.е.

.

Если игрок B избирает минимаксную стратегию, то его проигрыш будет не больше минимаксного значения, т.е.

Если

,

то игроки получают свои гарантированные платежи. В этом случае их стратегии оказываются совместимыми, а платеж­ная матрица имеет седловую точку на пересечении i-й стро­ки и j-го столбца, т. е. элемент является одновременно минимальным в своей строке и максимальным в своем столбце. Седловая точка матрицы является ценой игры. Седловая точка соответствует положению равновесия, если один из игроков использует стратегию, соответствующую седловой точке, то другому выгоднее всего избрать свою стратегию, также отвечающую седловой точке. Игра двух участников с нулевой суммой, имеющая седловую точку, называется вполне определенной. Разумно ожидать, что в игре такого типа оба партнера изберут стратегию седловой точки.







Дата добавления: 2015-08-17; просмотров: 546. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Метод Фольгарда (роданометрия или тиоцианатометрия) Метод Фольгарда основан на применении в качестве осадителя титрованного раствора, содержащего роданид-ионы SCN...

Потенциометрия. Потенциометрическое определение рН растворов Потенциометрия - это электрохимический метод иссле­дования и анализа веществ, основанный на зависимости равновесного электродного потенциала Е от активности (концентрации) определяемого вещества в исследуемом рас­творе...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия