Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выравнивание по прямой.





Предположим, что точки (хi уi) группируются около не­которой прямой.

рис 1.

 

В этом случае между переменными X и У существует функциональная зависимость, близкая к линейной. Будем искать эту зависимость в виде:

(1.1)

где a и b – параметры, подлежащие, вычислению,

- теоретическое значение функции (вычисленное по формуле).

Поставим задачу: найти такие значения а и b, чтобы прямая (1.1.) «наилучшим образом» проходила через множество точек Мi (xi, yi).

Если бы все точки Mi(xi, yi) лежали строго на пря­мой (1.1), то для каждой из точек было бы справедливо следую­щее равенство:

однако на практике имеет место следующее равенство:

(1.2)

т.е существует (отклонение) между наблюдаемыми ординатами (эмпирическими) и ординатами, полученными по урав­нению (теоретическими).

Принцип метода наименьших квадратов утверждает: оптимальны такие значения параметров а и b при которых сумма квадратов отклонений минимальна. Составим эту сумму:

или

(1.3)

Для исследования функции (1.3) с двумя переменными на ми­нимум, найдем частные производные, приравняем их к нулю и решив систему уравнений, найдем а и b.

(1.4)

или

(1.5)

Введя сокращенные обозначения, получим систему уравнений (1.5) в следующем виде:

(1.6)

Решив систему (1.6), найдем значения параметров а и b и подставим их значения в эмпирическую формулу (1.1).

Нахождение линейной функциональной зависимости называется выравнивание по прямой, а система уравнений (1.6) - нормальной системой метода наименьших квадратов при выравнивании по прямой.







Дата добавления: 2015-08-17; просмотров: 360. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия