Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычислений перемещений методом Мора





Излагаемый ниже метод является универсальным методом определения перемещений (как линейных так и угловых), возникающих в любой стержневой системе от произвольной нагрузки.

Рассмотрим два состояния системы. Пусть в первом из них (грузовое состояние) к балке приложена любая произвольная нагрузка, а во втором (единичное состояние) – сосредоточенная сила (рис.25).

Работа А21 силы на перемещении , возникающем от сил первого состояния:

.

Рис.25

Используя (2.14) и (2.15), выразим А21 (а, значит, и ) через внутренние силовые факторы:

(2.17)

Знак “+”, полученный при определении , означает, что направление искомого перемещения совпадает с направлением единичной силы. Если определяется линейное смещение, то обобщенная единичная сила представляет собой безразмерную сосредоточенную единичную силу, приложенную в рассматриваемой точке; а если определяется угол поворота сечения, то обобщенная единичная сила – это безразмерный сосредоточенный единичный момент.

Иногда (2.17) записывается в виде:

(2.18)

где - перемещение по направлению силы , вызванное действием группы сил . Произведения, стоящие в знаменателе формулы (2.18), называются соответственно жесткостями при изгибе, растяжении (сжатии) и сдвиге; при постоянных по длине размерах сечения и одинаковом материале эти величины можно выносить за знак интеграла. Выражения (2.17) и (2.18) называются интегралами (или формулами) Мора.

Наиболее общий вид интеграл Мора имеет в том случае, когда в поперечных сечениях стержней системы возникают все шесть внутренних силовых факторов:

(2.19)

Алгоритм вычисления перемещения методом Мора состоит в следующем:

1. Определяют выражения внутренних усилий от заданной нагрузки как функций координаты Z произвольного сечения.

2. По направлению искомого перемещения прикладывается обобщенная единичная сила (сосредоточенная сила – при вычислении линейного перемещения; сосредоточенный момент – при вычислении угла поворота).

3. Определяют выражения внутренних усилий от обобщенной единичной силы как функций координаты Z произвольного сечения.

4. Подставляют выражение внутренних усилий, найденные в п.п.1,3 в (2.18) или (2.19) и интегрированием по участкам в пределах всей длины конструкции определяют искомое перемещение.

Формулы Мора пригодны и для элементов, представляющих собой стержни малой кривизны, с заменой элемента длины dz в подынтегральном выражении элементом дуги ds.

В большинстве случаев плоской задачи используется только один член формулы (2.18). Так, если рассматриваются конструкции, работающие преимущественно на изгиб (балки, рамы, а частично и арки), то в формуле перемещений с соблюдением достаточной точности можно оставить только интеграл, зависящий от изгибающих моментов; при расчете конструкций, элементы которых работают, в основном, на центральное растяжение (сжатие), например, ферм, можно не учитывать деформации изгиба и сдвига, то есть в формуле перемещений останется только член, содержащий продольные силы.

Аналогично, в большинстве случаев пространственной задачи существенно упрощается формула Мора (2.19). Так, когда элементы системы работают преимущественно на изгиб и кручение (например, при расчете плоско-пространственных систем, ломаных стержней и пространственных рам) в (2.19) остаются только первые три члена; а при расчете пространственных ферм – только четвертый член.







Дата добавления: 2015-08-17; просмотров: 621. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Субъективные признаки контрабанды огнестрельного оружия или его основных частей   Переходя к рассмотрению субъективной стороны контрабанды, остановимся на теоретическом понятии субъективной стороны состава преступления...

ЛЕЧЕБНО-ПРОФИЛАКТИЧЕСКОЙ ПОМОЩИ НАСЕЛЕНИЮ В УСЛОВИЯХ ОМС 001. Основными путями развития поликлинической помощи взрослому населению в новых экономических условиях являются все...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия