Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Работа внешних сил. Потенциальная энергия





Определим работу силы F, статически приложенной к некоторой упругой системе (рис.20, а), материал которой следует закону Гука.

 

Рис. 20

При малых деформациях к этой системе применим принцип независимости действия сил, следовательно, перемещения отдельных точек и сечений конструкции прямо пропорциональны вызывающей их нагрузке:

, (2.2)

где - перемещение по направлению силы F; - некоторый коэффициент, зависящий от материала, схемы и размеров сооружения. Увеличение силы F на бесконечно малую величину dF вызовет увеличение перемещения на .

Составим выражение элементарной работы внешней силы на перемещении , отбрасывая при этом бесконечно малые величины второго порядка малости: .

Заменим , используя (2.2):

.

Интегрируя это выражение в пределах полного изменения силы от нуля до ее конечного значения, получим формулу для определения работы, совершаемой статически приложенной внешней силой F:

или, с учетом(2.2):

, (2.3)

то есть работа внешней силы при статическом действии ее на любое упругое сооружение равна половине произведения значения этой силы на величину соответствующего ей перемещения.

Для обобщения полученного вывода под силой понимают любое воздействие, приложенное к упругой системе, то есть не только сосредоточенную силу, но и момент или равномерно распределенную нагрузку; под перемещением понимают тот его вид, на котором данная сила производит работу: сосредоточенной силе соответствует линейное перемещение, сосредоточенному моменту – угловое, равномерно распределенной нагрузке – площадь эпюры перемещений на участке действия нагрузки.

При статическим действии на конструкцию группы внешних сил работа этих сил равна половине суммы произведений каждой силы на величину соответствующего ей перемещения, вызванного действием всей группы сил. Например, при действии на балку (рис.20,б) сосредоточенных сил F1, F2 и сосредоточенных моментов М1 и М2 работа внешних сил:

(2.4)

Работу внешних сил на вызванных ими перемещения можно выразить и иначе – через внутренние силовые факторы (изгибающие моменты, продольные и поперечные силы), возникающие в поперечных сечениях системы.

Выделим из прямолинейного стержня двумя сечениями, перпендикулярными его оси (рис.21, а), бесконечно малый элемент dz.

Стержень состоит из бесконечно большого числа таких элементов. К каждому элементу dz в общем случае плоской задачи приложены продольная сила Nz, изгибающий момент Мх и поперечная сила Qy.

Для выделенного элемента dz усилия N, M, Q являются внешними силами, поэтому работу можно получить как сумму работ, совершенных статически возрастающими усилиями N, M, Q на соответствующих деформациях элементов dz.

Рассмотрим элемент dz, находящийся только под действием продольных сил N (рис.21,б). Если его левое сечение считать неподвижным, то правое сечение под влиянием продольной силы переместится вправо на величину . На этом перемещении сила N совершит работу:

(2.5)

Рис. 21

Если неподвижно закрепить левое сечение элемента dz, находящегося под действием только изгибающих моментов М (рис.22,а), то взаимный угол поворота торцевых сечений элемента будет равен углу поворота его правого сечения:

.

На этом перемещении момент М совершит работу:

(2.6)

Рис. 22

Закрепим левое сечение элемента dz, находящегося под действием только поперечных сил Q (рис.22,б,в), а к правому приложим касательные усилия , равнодействующей которых является поперечная сила Q. Предположим, что касательные напряжения равномерно распределены по всей площади А поперечного сечения, то есть , тогда перемещение определяется в виде:

,

а работа силы Q на этом перемещении будет:

(2.7)

В действительности касательные напряжения распределены по площади поперечного сечения неравномерно, что учитывается введением в (2.7) поправочного коэффициента .

Суммируя (2.5) – (2.7), получим полное значение работы:

(2.8)

Интегрируя выражение в пределах длины L каждого участка всех стержней и суммируя результаты, получим:

(2.9)

Из формулы (2.9) следует, что работа внешних сил на вызванных ими перемещениях всегда положительна.

На основании закона сохранения энергии работа внешних сил переходит в потенциальную энергию деформации, то есть .







Дата добавления: 2015-08-17; просмотров: 603. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия