Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Преобразование Лапласса. Передаточные функции.





Преобразование Лапласса существенно облегчает решение уравнений вида (1), т.к. позволяет заменить дифференциальные уравнения на алгебраические. При этом в результате применения интегрального преобразования Лапласса к уравнению динамики функция f вещественного переменного (времени t) преобразуется в функцию F комплексного переменного (p).

p = a ± gw,

где a - постоянный коэффициент, g - мнимая единица (g2 = -1).

Функция вещественного переменного f (t) называется оригиналом функции, функция комплексного переменного F(p) - изображением оригинала. Любому оригиналу функции соответствует его изображение f(t) = F(p),

которое определяется по таблицам или формуле перехода

F(p) = ò f(t)e-pt dt.

Для замены оригинала его изображением существует правило дифференцирования: операция дифференцирования вещественного переменного соответствует оператору умножения преобразования простейшей функции на комплексную переменную соответствующей степени:

f(t) = F(p),

 

f I(t) = F(p)×p,

 

f II(t) = F(p)×p2,

 

f III(t) = F(p)×p3

×××××××××××××××××××××××××××××;

f n(t) = F(p)×pn.

Применив правило к уравнению (1) получим:

 

A0xвых(p)pm + A1xвых(p)pm-1 + …+ Am-1xвых(p)p + Amxвых(p) =

= B0xвх(p)pn + B1xвх(p)pn-1 + …+ Bn-1xвх(p)p + Bnxвх(p).

 

Или

 

xвых(p)(A0pm + A1pm-1 + …+ Am-1p + Am) = xвх(p)(B0pn + B1pn-1 + …+ Bn-1p + Bn)

 

Очень удобно при исследовании АСР представлять связь входной и выходной величин с помощью передаточной функции.

Передаточная функция W (p) - это отношение изображения оригинала выходного сигнала к изображению оригинала входного сигнала при нулевых начальных условиях. Передаточная функция определяется по конечному выражению, т.е.

.

 

Знаменатель передаточной функции называется характеристическим полиномом

.

 

 







Дата добавления: 2015-08-17; просмотров: 547. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия