Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение состояния. Термодинамическая характеристика раствора





В том случае, когда нужно охарактеризовать осмотическое давление раствора полимера в достаточно широком диапазоне концентраций, раствор нельзя рассматривать как идеальный с невзаимодействующими молекулами растворенного вещества. Химический потенциал растворителя в реальном растворе наилучшим образом может быть представлен степенным рядом, т.е. путем вириального разложения.

Применительно к разбавленному реальному раствору указанный подход приводит к следующему выражению для химического потенциала растворителя:

 

 

Исходя из (3.61) и с учетом (3.56), зависимость осмотического давления раствора от концентрации растворенного вещества будет представлена следующим выражением:

 

 

где А1, А2,... или соответствующие им В, С,... в других, также принятых обозначениях, являются константами, зависящими от температуры и природы растворенного вещества, которые называются вириальными коэффициентами.

Для теории растворов полимеров особое значение имеет второй вири-альный коэффициент, обозначаемый как А2 или В. Под первым вириальным коэффициентом подразумевается первый член в скобках уравнения (3.61), равный 1/М2.

Значения вириальных коэффициентов могут быть определены, исходя из выражения для химического потенциала растворителя, полученного как конечный результат теории Флори-Хаггинса. Из (3.42) с учетом (3.56) имеем:

 

 

При малых концентрациях полимера член ln(1 - φ2) можно разложить в ряд по степеням φ2, тогда:

 

 

где ρ1, ρ2 - плотности растворителя и полимера; М1 - молекулярная масса растворителя. При достаточно малой концентрации полимера членами ряда в скобках, начиная с третьего, в уравнении (3.65) можно пренебречь, тогда:

 

 

Уравнения (3.65), (3.68) относятся к уравнениям состояния, поскольку они связывают значения параметров раствора и его термодинамических характеристик со свойствами, доступными для измерения, в данном случае - с осмотическим давлением.

Зависимость, вытекающая из уравнения (3.68), используется для термодинамической характеристики качества растворителя в растворе. На рис. 3.4 приведены три возможных случая:

кривые 1,2 А2 > 0, < 1/2 - хороший растворитель;

кривая 3 А2 = 0, = 1/2 - идеальный растворитель;

кривая 4 А2 < 0, > 1/2 - плохой растворитель.

 

 

 

Экспериментально найдено, что в хороших растворителях величина А2 обратно пропорциональна молекулярной массе полимера в степени 0,05 - 0,25, т.е. А2 ~ 1/М0,1. Напомним, что состояние, отвечающее термодинамически плохому растворителю, реализуется в очень узком интервале, т.к. при Т < θ раствор становится термодинамически неустойчивым и разделяется на две фазы.

 







Дата добавления: 2015-08-17; просмотров: 689. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия