Правило Крамера
Рассмотрим случай, когда число уравнений равно числу неизвестных , т.е. систему
(5.6)
Теорема 5.1 (правило Крамера). Если определитель матрицы системы линейных уравнений с неизвестными отличен от нуля, то система имеет единственное решение, которое находится по формулам
В самом деле, рассмотрим систему (5.6) как матричное уравнение . Так как определитель матрицы отличен от нуля, по теореме 4.2 заключаем, что матричное уравнение имеет единственное решение:
где — обратная матрица. Запишем i-й элемент столбца , учитывая, что в i-й строке присоединенной матрицы стоят алгебраические дополнения i-го столбца матрицы
Заметим, что в скобках записано разложение определителя по i-му столбцу, т.е. , что и требовалось доказать.
|