Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение нелинейных уравнений





Цель: Познакомиться с приемами решения нелинейных уравнений средствами интегрированной среды MathCAD.

Задание: Решить уравнение .

Технология выполнения задания

Многие уравнения, например трансцендентные, и системы из них не имеют аналитических решений. Однако они могут решаться численными методами с заданной погрешностью (не более значения, заданного системной переменной TOL).

Для простейших уравнений вида f(x)=0 решение находится с помощью функции root(выражение, имя_переменной, а, b), где а,b – пределы интервала изоляции корня, которые позволяют избежать вывода корней, не представляющих интереса при решении задач, например физических.

Эта функция возвращает с заданной точностью значение переменной, при котором выражение равно нулю и реализует вычисления итерационным методом. Результаты ее использования отображены на рисунке 34.

 
 

Рисунок 34 - Пример решения уравнения с помощью функции root

Графическое решение уравнения выполняется в два этапа.

1) Необходимо преобразовать уравнение к виду f(x)=0 и построить график функции f(x);

2) Определить значение точки пересечения графика функции с осью абсцисс, используя трассировку.

Второй этап реализуется в свою очередь в несколько шагов, а именно:

a) выделим область графика функции и активизируем динамическую кнопку Масштаб , расположенную на панели инструментов Графики;

b) увеличим участок пересечения графика функции с осью ОХ, в соответствии с рисунком 35. Для этого необходимо протащить мышью по полю графика, заключив в рамку исследуемую область. При этом в окне просмотра отображаются минимальные и максимальные значения Х и У, определяющие область просмотра. Кнопки Zoom, Uzoom и FullView позволяют соответственно увеличить выделенную часть графика, снять выделение и вернуться к просмотру всего графика.

 
 

Рисунок 35 - Пример увеличения участка графика

После нажатия на кнопку Zoom, график функции принимает вид, отображенный на рисунке 36. Для получения более точного результата полученный участок пересечения графика функции с осью ОХ, важно увеличить аналогичным образом еще несколько раз. Для данного примера остановимся на участке, отображенном на рисунке 37.

c) трассировка увеличенного участка осуществляется с помощью динамической кнопки Слежение , расположенной на панели инструментов Графики. Трассировка начинает работать после выделения графика.

В окне графика появляется большое перекрестие из двух черных пунктирных линий. С помощью указателя мыши его можно перемещать по графику с дискретностью, определяемой заданным шагом изменения абсциссы х. При этом координаты текущей точки ближайшей кривой графика, на которую установлено перекрестие, отображаются в окне трассировки, изображенном на рисунке 38.

Это позволяет в приближении выявить координаты особых точек графика, в данном случае решение уравнения f(x)=0.

Кнопки Copy X и Copy Y позволяют занести соответствующие координаты в буфер обмена. Кнопка Close завершает трассировку и закрывает окно трассировки. Если установлен флажок Trace Data Point, то при трассировке указатель автоматически устанавливается на точку ближайшей кривой, отслеживая ее ход. При снятом флажке указатель может быть установлен в любую точку области графика, при этом координаты этой точки отображаются в окне трассировки.

Рисунок 36 - Участок графика после первого увеличения   Рисунок 37 - Участок графика после многократного увеличения  

В нашем случае при трассировке получаем результат, отображенный на рисунке 38.

Рисунок 38 - Трассировка увеличенного участка графика

Таким образом, при решении трансцендентного уравнения первым способом, то есть с помощью встроенной функции Root, получено решение х=1,592, а графическим способом получен результат х=1,5924.

Для поиска всех корней обычного полинома p(x) степени n MathCAD поддерживает функцию polyroots(V), которая возвращает вектор всех корней полинома степени n, коэффициенты которого находятся в векторе V, имеющем длину n+1.

Замечание: Не рекомендуется использовать эту функцию, если степень полинома выше пятой-шестой, так как трудно получить малую погрешность вычисления корней.

Таблица 17 - Индивидуальные варианты лабораторной работы №15

№ В Варианты индивидуальных заданий
Решить уравнение f(x)=0 одним из предложенных преподавателем способом  
   
   
   
   
   
   
   

 

Продолжение таблицы 17

   
   
   
   
   
   
   
   

 







Дата добавления: 2015-08-17; просмотров: 416. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия