Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение нелинейных уравнений





Цель: Познакомиться с приемами решения нелинейных уравнений средствами интегрированной среды MathCAD.

Задание: Решить уравнение .

Технология выполнения задания

Многие уравнения, например трансцендентные, и системы из них не имеют аналитических решений. Однако они могут решаться численными методами с заданной погрешностью (не более значения, заданного системной переменной TOL).

Для простейших уравнений вида f(x)=0 решение находится с помощью функции root(выражение, имя_переменной, а, b), где а,b – пределы интервала изоляции корня, которые позволяют избежать вывода корней, не представляющих интереса при решении задач, например физических.

Эта функция возвращает с заданной точностью значение переменной, при котором выражение равно нулю и реализует вычисления итерационным методом. Результаты ее использования отображены на рисунке 34.

 
 

Рисунок 34 - Пример решения уравнения с помощью функции root

Графическое решение уравнения выполняется в два этапа.

1) Необходимо преобразовать уравнение к виду f(x)=0 и построить график функции f(x);

2) Определить значение точки пересечения графика функции с осью абсцисс, используя трассировку.

Второй этап реализуется в свою очередь в несколько шагов, а именно:

a) выделим область графика функции и активизируем динамическую кнопку Масштаб , расположенную на панели инструментов Графики;

b) увеличим участок пересечения графика функции с осью ОХ, в соответствии с рисунком 35. Для этого необходимо протащить мышью по полю графика, заключив в рамку исследуемую область. При этом в окне просмотра отображаются минимальные и максимальные значения Х и У, определяющие область просмотра. Кнопки Zoom, Uzoom и FullView позволяют соответственно увеличить выделенную часть графика, снять выделение и вернуться к просмотру всего графика.

 
 

Рисунок 35 - Пример увеличения участка графика

После нажатия на кнопку Zoom, график функции принимает вид, отображенный на рисунке 36. Для получения более точного результата полученный участок пересечения графика функции с осью ОХ, важно увеличить аналогичным образом еще несколько раз. Для данного примера остановимся на участке, отображенном на рисунке 37.

c) трассировка увеличенного участка осуществляется с помощью динамической кнопки Слежение , расположенной на панели инструментов Графики. Трассировка начинает работать после выделения графика.

В окне графика появляется большое перекрестие из двух черных пунктирных линий. С помощью указателя мыши его можно перемещать по графику с дискретностью, определяемой заданным шагом изменения абсциссы х. При этом координаты текущей точки ближайшей кривой графика, на которую установлено перекрестие, отображаются в окне трассировки, изображенном на рисунке 38.

Это позволяет в приближении выявить координаты особых точек графика, в данном случае решение уравнения f(x)=0.

Кнопки Copy X и Copy Y позволяют занести соответствующие координаты в буфер обмена. Кнопка Close завершает трассировку и закрывает окно трассировки. Если установлен флажок Trace Data Point, то при трассировке указатель автоматически устанавливается на точку ближайшей кривой, отслеживая ее ход. При снятом флажке указатель может быть установлен в любую точку области графика, при этом координаты этой точки отображаются в окне трассировки.

Рисунок 36 - Участок графика после первого увеличения   Рисунок 37 - Участок графика после многократного увеличения  

В нашем случае при трассировке получаем результат, отображенный на рисунке 38.

Рисунок 38 - Трассировка увеличенного участка графика

Таким образом, при решении трансцендентного уравнения первым способом, то есть с помощью встроенной функции Root, получено решение х=1,592, а графическим способом получен результат х=1,5924.

Для поиска всех корней обычного полинома p(x) степени n MathCAD поддерживает функцию polyroots(V), которая возвращает вектор всех корней полинома степени n, коэффициенты которого находятся в векторе V, имеющем длину n+1.

Замечание: Не рекомендуется использовать эту функцию, если степень полинома выше пятой-шестой, так как трудно получить малую погрешность вычисления корней.

Таблица 17 - Индивидуальные варианты лабораторной работы №15

№ В Варианты индивидуальных заданий
Решить уравнение f(x)=0 одним из предложенных преподавателем способом  
   
   
   
   
   
   
   

 

Продолжение таблицы 17

   
   
   
   
   
   
   
   

 







Дата добавления: 2015-08-17; просмотров: 416. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия