Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение дифференциальных уравнений





Цель: Изучить специальные функции, позволяющие осуществлять решение обыкновенных дифференциальных уравнений средствами интегрированной среды.

Задание: Найти частное решение дифференциального уравнения второго порядка , удовлетворяющего начальным условиям y(1)=0, y′(1)=3.

Технология выполнения задания

Многие серьезные физические и научно-технические задачи (особенно относящиеся к анализу динамических систем и к их математическому моделированию) базируются на решении систем дифференциальных уравнений. Нелинейные дифференциальные уравнения и системы с такими уравнениями, как правило, не имеют аналитических методов решения. Поэтому особенно важна возможность их решения численными методами и желательно представление решений в графическом виде.

Решение дифференциальных уравнений в интегрированной среде MathCAD осуществляется с помощью специальной функции odesolve(x, b[, step]).

Эта функция возвращает решение дифференциальных уравнений, описанных в блоке Given, при заданных начальных условиях и конце интервала интегрирования b. Ее можно активизировать, используя кнопку Мастера функций на панели инструментов Стандартная.

Функция имеет некоторые особенности. Например, если указано число шагов step, то решение выполняется с фиксированным шагом, иначе – адаптивным методом.

Хотя аналитическое выражение для этой функции не выводится, но графическое ее представление не вызывает затруднений, кроме того с ней можно выполнять математические преобразования.

Решение дифференциального уравнения второго порядка, указанного в задании, изображено на рисунке 40.

Дифференциальные уравнения могут быть записаны с использованием шаблонов, которые можно активизировать с помощью динамических кнопок и , расположенных на панели инструментов Калькулус или в виде , где «′» задается при помощи комбинации клавиш Ctrl + F7.

Рассмотренная функция, для решения дифференциального уравнения, использует фиксированный шаг метода Рунге-Кутта.

Для использования адаптивного метода необходимо щелкнуть правой клавишей мыши по функции odesolve и выбрать в ниспадающем меню Adaptive.

Для решения систем обыкновенных дифференциальных уравнений в среде MathCAD они должны быть представлены в форме Коши, то есть:

- задает начальные условия, - система ОДУ.

Эти системы можно представить в векторной форме: Y(x0)=Y0 и Y=F(x, Y). Тогда решение системы обыкновенных дифференциальных уравнений в форме Коши осуществляется аналогично решению одиночного дифференциального уравнения, но должно быть организовано в векторной форме. При этом добавление каждый раз очередного уравнения увеличивает число уравнений в их векторной записи.

Интегрированная среда MathCAD 2000 PRO помогает решать задачи такого класса с помощью ряда (около десятка) встроенных функций, одна из которых функция rkfixed(y, x1, x2, n, F).

Эта функция возвращает матрицу решений методом Рунге-Кутта системы обыкновенных дифференциальных уравнений с начальными условиями в векторе y, правые части которых записаны в символьном векторе F на интервале от х1 до х2 при фиксированном числе шагов n.

Однако более точный результат можно получать, используя функцию Rkadapt, так как она позволяет автоматически изменять шаг, то есть она более привлекательна для решения систем дифференциальных уравнений, имеющих относительно медленно изменяющиеся решения.

 

 
 

Рисунок 40 - Пример решения дифференциального уравнения

Таблица 19 - Индивидуальные варианты лабораторной работы №17

№ В Варианты индивидуальных заданий
Найти частное решение дифференциального уравнения второго порядка, удовлетворяющего указанным начальным условиям
 
 
 
 
 
 
 
 

Продолжение таблицы 19

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Продолжение таблицы 19

 
 
 

 








Дата добавления: 2015-08-17; просмотров: 618. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия