Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Способы нормализации локальных критериев





Проблема нормализации локальных критериев возникает каждый раз когда решаются задачи, в которых локальные критерии имеют различную размерность. Например, для космических кораблей важным критерием является масса, другим стоимость. Сравнивать критерии массы и стоимости сравнивать невозможно.

В связи с этим необходимо уметь нормализовать критерии. По существу нормализация не требуется только при использовании способа относительной уступки, так как в этом случае нормализация осуществляется путем деления на максимальное значение столбца. В общем случае каждое новое значение критерия получают путем деления текущего iого значения критерия на общее идеальное значение этого критерия Принципиально сложным является выбор идеального вектора. Для формализации выбора такого вектора используются 3 способа:

  1. Идеальный вектор. Определяется некоторыми заданными значениями локальных критериев. В практических задачах эти значения идеального вектора определяются заказчиком разрабатываемой системы. Основным недостатком этого способа является субъективность заказчика.
  2. Идеальным считается вектор, элементами которого являются максимальные значения локальных критериев.
  3. В качестве элементов идеального вектора используется максимально возможный разброс их значений относительно заданного

На данным момент не существует лучшего метода для определения идеального вектора. Все рассмотренные способы характерны для случая, кода все рассмотренные локальные критерии имеют одинаковую важность. А в большинстве практических задач локальные критерии имеют неодинаковую важность. В связи с этим разработан и используется ряд способов принятия решений ыв условиях когда локальные критерии имеют неодинаковую важность. Основными подходами в решении таких задач является использование:

  1. Ряда приоритетов
  2. Вектора приоритетов
  3. Весового вектора

Ряд приоритетов принято и в ряде приоритетов принято считать что вариант записанный левее текущего является более приоритетным.

Если среди критериев имеется несколько с одинаковой важностью, то ряд может быть записан следующим образом: что означает что критерий 3,4,5 имеют одинаковы приоритет, а по важности располагаются на 3ем месте после критериев 1,2. Такая запись получила название жесткого приоритета, так как непосредственно в этой записи указывается собственно приоритет критерия.

Вектор приоритетов - это способ косвенного задания приоритетов. Компоненты этого вектора определяют степень относительного превосходства двух соседних критериев из ряда приоритетов. То есть лямбдаi показывает во сколько раз критерий Fi важнее критерия Fi+1.

Весовой вектор - представляет собой n мерный вектор, элементы которого связаны следующими соотношениями:

Если критериев всего 3, то значения этого критерия могут вычисляться через значения Пример многокритериальной задачи принятия решения

Для отдела центрального конструкторского бюро необходимо преобрести устройство вывода документации на печать (плоттеры). Предварительным анализом поставщиков установлено, что могут быть закуплены плоттеры 3х моделей

Вариант\критерий Fмм Rdpi Vкб
       
       
       

Fмм - максимально возможный формат отпечатанного чертежа

Rdpi -

Vкб - объем буффера

Требуется используя рассмотренные способы компромисса определить лучший вариант плоттера в двух условиях:

  1. без учета приоритета локальных критериев
  2. С учетом приоритета локальных критериев

Решение:

  1. Нормализация исходных данных. Так как локальные критерии имеют различную размерность, то вначале необходимо нормализовать исходную таблицу. Для этого воспользуемся методом идеального вектора.

В качестве идеального вектора выберем: Ug=<10,20,256>

Тогда учитывая, что всего критериев 3 воспользуемся для вычисления формулами Перейдем от таблицы 1 к таблице 2, путем приведения значений элементов исходной таблицы:

Вар\VP F R V
  0.4 1.0 0.25
  0.8 0.7 0.5
    0.6 1.0
  1. Выбор наилучшего варианта без учета локальных критериев. Воспользуемся рассмотренными способами компромисса:

2.1 принцип равномерности – по принципу квазиравенства 2, по максимину 3ий вариант

2.2 принцип уступки:

a) абсолютная уступка – 3 вариант

b) относительная – 3ий вариант

2.3 Выделение одного оптимизирующего критерия - для плоттера из выбранных критериев наиболее важным является первый, поэтому по таблице 2 выбираем максимальный элемент в столбце F, следовательно поэтому критерию выбираем строку 3.

2.4 Принцип последовательной уступки. Выбрали первый столбец, максимальное значение 1. Уступка 0.5. 1-0.5=0.5. Значит вычеркиваем значение <0.5. Отбросили первую строку. По первому столбцу отобрали. Теперь отбираем по второму, максимальное значение 0,7. Уступка 0,05. 0,7-0,05=0,65. Вычеркиваем строку со значеним в столбце <0.65.

  1. Выбор наилучшего варинта с учетом приоритета локальных критериев

Выберев в качестве вектора приоритетов вектор, имеющий вид

  F R V
  0.16 0.4 0.1
  0.32 0.28 0.2
  0.2 0.12 0.2

Таже последовательность действий

По квазиравенству 3, макисмимина 2

По абсолютной уступке 2

По относительной 2

Выделение одного оптимизирующего критерия 2

Последовательная уступка 2







Дата добавления: 2015-08-17; просмотров: 2063. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые ситуационные задачи. Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт Задача 1.У больного А., 20 лет, с детства отмечается повышенное АД, уровень которого в настоящее время составляет 180-200/110-120 мм рт. ст. Влияние психоэмоциональных факторов отсутствует. Колебаний АД практически нет. Головной боли нет. Нормализовать...

Эндоскопическая диагностика язвенной болезни желудка, гастрита, опухоли Хронический гастрит - понятие клинико-анатомическое, характеризующееся определенными патоморфологическими изменениями слизистой оболочки желудка - неспецифическим воспалительным процессом...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия