Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Число сочетаний из n элементов по m





Число сочетаний обозначается Cnm и вычисляется по формуле:

Текст задания:

Задача 1. Сколькими способами можно выбрать 3 дежурных из группы в 20 человек?

Задача 2. Расписание одного дня содержит 5 уроков. Определить количество таких расписаний при выборе из 11 дисциплин.

Задача 3. Из цифр 1, 2, 3, 4, 5 составлены всевозможные пятизначные числа без повторения цифр. Сколько среди этих чисел таких, которые начинаются цифрой 3?

Задача 4. Из m книг, стоящих на книжной полке, нужно выбрать k таких, которые не стояли рядом на книжной полке.

Задача 5. Имеется 5 львов и 4 тигра. Необходимо их расставить в ряд, но при этом известно, что тигр не может идти спокойно за тигром.

Задача 6. Сколько перестановок можно сделать из букв слова «Миссисипи»?

Задача 7. Семь девушек водят хоровод. Сколькими различны ми способами они могут встать в круг?

Задача 8. Сколько экзаменационных комиссий, состоящих из 7 человек, можно составить из 15 преподавателей?

Задача 9.На курсе изучается 5 предметов. Сколькими способами можно составить расписание на субботу, если в этот день должны быть две различные пары?

Задача10.Сколькими способами можно рассадить 8 человек: 1. В один ряд? 2. За круглым столом?

Самостоятельная работа № 22

Тема: Аксиоматическое определение вероятности

Цель: закрепить знания и умения студентов по освоению темы методом решения задач.

Теоритическое обоснование:

Классическое определение вероятности - основным понятием теории вероятностей является понятие случайного события. Случайным событием называется событие, которое при осуществлении некоторых условий может произойти или не произойти. Например, попадание в некоторый объект или промах при стрельбе по этому объекту из данного орудия является случайным событием.

Событие называется достоверным, если в результате испытания оно обязательно происходит. Невозможным называется событие, которое в результате испытания произойти не может.

Случайные события называются несовместными в данном испытании, если никакие два из них не могут появиться вместе.

Случайные события образуют полную группу, если при каждом испытании может появиться любое из них и не может появиться какое-либо иное событие, несовместное с ними.

Рассмотрим полную группу равновозможных несовместных случайных событий. Такие события будем называть исходами. Исход называется благоприятствующим появлению события А, если появление этого события влечет за собой появление события А.

Пример. В урне находится 8 пронумерованных шаров (на каждом шаре поставлено по одной цифре от 1 до 8). Шары с цифрами 1, 2, 3 красные, остальные – черные. Появление шара с цифрой 1 (или цифрой 2 или цифрой 3) есть событие, благоприятствующее появлению красного шара. Появление шара с цифрой 4 (или цифрой 5, 6, 7, 8) есть событие, благоприятствующее появлению черного шара.

Вероятностью события A называют отношение числа m благоприятствующих этому событию исходов к общему числу n всех равновозможных несовместных элементарных исходов, образующих полную группу

Текст задания:

Задача 1. В группе 30 студентов. Необходимо выбрать старосту, заместителя старосты и профорга. Сколько существует способов это сделать?

Задача 2. В ящике 5 апельсинов и 4 яблока. Наудачу выбираются 3 фрукта. Какова вероятность, что все три фрукта – апельсины?

Задача 3. В ящике 10 красных и 5 синих пуговиц. Вынимаются наудачу две пуговицы. Какова вероятность, что пуговицы будут одноцветными?

Задача 4. Игральная кость брошена 6 раз. Найти вероятность того, что ровно 3 раза выпадет «шестерка».

Задача 5. Абонент забыл последнюю цифру номера телефона и поэтому набирает её наугад. Определить вероятность того, что ему придётся звонить не более чем в 3 места.

Задача 6. В прямоугольник 5*4 см2 вписан круг радиуса 1,5 см. Какова вероятность того, что точка, случайным образом поставленная в прямоугольник, окажется внутри круга?

Задача 7. Найти вероятность того, что если бросить монету 200 раз, то орел выпадет от 90 до 110 раз.

Задача 8. Один из трех стрелков вызывается на линию огня и производит два выстрела. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3; для второго – 0,5; для третьего – 0,8. Мишень не поражена. Найти вероятность того, что выстрелы произведены первым стрелком.

Задача 9. Вероятность появления события в каждом из 100 независимых испытаний равна 0,8. Найти вероятность того, что событие появится в этих испытаниях 90 раз.

Задача 10. Вероятность нарушения стандарта при штамповке карболитовых колец р=0,3. Найти вероятность того, что в партии из 800 готовых колец число непригодных заключено между 225 и 255.

 

Самостоятельная работа № 23

Тема: Решение практических задач с применением вероятностных методов

Цель: закрепить знания и умения студентов по освоению темы методом решения задач.

Теоритическое обоснование:







Дата добавления: 2015-08-27; просмотров: 1120. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия