Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Закон распределения интенсивности источника





 

Закон распределения интенсивности (плотности теплового потока) является одной из важнейших характеристик источника. В процессах механической обработки, как правило, возникает несколько источников теплоты. Чтобы для каждого из них установить тепловую мощность, необходимо:

1) определить общую тепловую мощность процесса;

2) распределить последнюю между конкретными источниками, возникающими в данной технологической операции, то есть составить приходную часть теплового баланса (см. уравнение (1.1)).

Если тепловая мощность данного источника (Q, Дж/с) распределенного по некоторому объему, расположенному в системе координат X, У, Z, то между элементом тепловой мощности dQ и интенсивностью источника q (x, y, z) существует очевидное соотношение:

dQ (x, y, z) = q (x, y, z)dx dy dz. (2.1)

В реальных технологических процессах распределение интенсивности источников описывается сложными закономерностями. При теплофизическом анализе прибегают к некоторым идеализированным законам распределения интенсивности источников и стоков в пространстве и во времени [3].

Рассмотрим некоторые идеализированные законы, часто встречающиеся при теплофизическом анализе процессов механической обработки материалов.

Самым простым является равномерное стационарное распределение, когда интенсивность q0 не зависит от координат и времени.

Соответственно для трех-, двух- и одномерного источников, что отмечено индексами при q.

Следующую группу представляют источники с линейно распределенной интенсивностью. В качестве примера рассмотрим линейный призматический источник, ограниченный в трех направлениях, интенсивность которого в двух направлениях распределена по линейным законам, а в третьем – равномерно (рис. 2.2). Для этого источника

q (x, y, z) = qo – k1 x – k2 y. (2.2)

Из условий q (ℓ, 0, z) = 0 и q (x, ∆, z) = 0 получаем:

.

Тогда:

Откуда:

. (2.3)

Следовательно:

. (2.4)

где – безразмерные абсцисса и ордината любой точки внутри источника. На рис. 2.2 приведен двумерный источник с распределением интенсивности по экспоненциальному закону q(x) = q0 exp [-kx]

по оси ОХ и равномерного по оси OZ. Используя (2.1), получаем при u = exp [-3] = exp [-k×ℓ] @ 0,047. Поэтому если источник в точке х = ℓ;имеет интенсивность, близкую к нулю, можно положить k×ℓ» 3, и k=3/ℓ;

. (2.5)

Большую группу идеализированных источников составляют источники с распределением интенсивности по нормальному закону. К этой группе относятся нормально-линейные, нормально-плоские (полосовые), нормально-круговые и нормально объемные источники теплоты. Общим для этих источников является то, что распределение интенсивности вдоль одной, двух или трех осей координат подчиняется закону нормального распределения. На рис. 2.3 приведен двумерный ограниченный источник длинной b и шириной 2ℓ;. Вдоль оси ОХ он имеет закон распределения:

q (x) = q0 exp [-k × x2], (2.6)


а вдоль оси OZ распределен равномерно. Коэффициент k, характеризующий «остроту» кривой нормального распределения, называют коэффициентом сосредоточенности теплового потока. Для нормально-плоского источника имеем:

. (2.7)

известно, что:

, (2.8)

где Ф(рu) – функция интеграла вероятности Гаусса, иногда обозначаемая erf [pu]. Используя формулу (2.7), получаем:

. (2.9)

В правой части выражения учтено, что при

Нормально-круговой двумерный источник описывается уравнением

(2.10)

где – безразмерный текущий радиус.

Большое распространение имеют комбинированные источники. Рассмотрим источник, в котором на первой части контактной площадки теплота распределена равномерно, а на второй – по некоторой убывающей кривой, которая хорошо аппроксимируется экспонентой.

Рис. 2.3. Нормально распределенные источники: полосовой и круговой

Для него:

(2.11)

 

Рис. 2.4. Источник с комбинированным законом распределения

Определив q0 , получаем формулы для описания законов распределения интенсивностей:

при ,

при , (2.12)

где .







Дата добавления: 2015-08-27; просмотров: 1009. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2026 год . (0.012 сек.) русская версия | украинская версия