Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

В) эквивалентная система с главным вектором и главным моментом





 

Далее заменяем (векторным суммированием) сходящиеся в точке О векторы сил одной силой

,

которую называют главным вектором системы сил. Геометрически складываем также все векторы моментов пар сил , заменяя их одним (равнодействующим) моментом

,

который называют главным моментом системы сил.

Таким образом, произвольную систему сил, действующих на тело, мы эквивалентно заменили двумя силовыми факторами: главным вектором и главным моментом ,см. рисунок 19,в.

Следует отметить, что при параллельном переносе сил в любой центр приведения не изменяются ни величины, ни направления этих сил. Поэтому главный вектор системы сил не зависит от того, какая точка тела принята за цент приведения. Таким образом, главный вектор является инвариантом (неизменяемой величиной) данной системы сил. В отличие от главного вектора главный момент системы сил не является ее инвариантом, т. к. он зависит от выбранного центра приведения. При перемене центра приведения изменяются и моменты сил системы относительно этого центра, поэтому изменяется и главный момент.


Главным вектором R системы сил F1,F2 …, Fn называется векторная сумма этих сил, т. е.

R=

Таким образом, главный вектор системы сил можно определить геометрически с помощью многоугольника сил.

Аналитически главный вектор определяется тремя своими проекциями на координатные оси;

R

R

R

 

Главным моментом Мо системы сил F1: F2,..., Fn относительно точки называется векторная сумма моментов этих сил относительно этой точки, т. е

M

Таким образом, главный момент системы сил относительно точки можно определить геометрически с помощью многоугольника момен­тов этих сил относительно данной точки.

Аналитически главный момент относительно точки определяется тремя своими проекциями на координатные оси:

 

M

M

M

или

; ;

Заметим, что понятия главного вектора и равнодействующей системы сил не тождественны. Как мы увидим в следующей главе, не всякая система сил имеет равнодействующую. Если же система сил и приводится к равнодействующей, то последняя, хотя геометрически и равна главному вектору, но имеет вполне определенную линию действия, в то время как главный вектор (также и главный момент) является свободным вектором.

 







Дата добавления: 2015-08-27; просмотров: 1029. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия