Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сложения пар, произвольно расположенных в пространстве . простейшая система для системы пар сил. условие равновесия системы пар сил.





Свойства пар сил определяются рядом теорем, которые приводятся без доказательств:

· Две пары эквивалентны, если их векторные моменты равны по величине и одинаково направлены.

· Действие пары на тело не изменится, если ее перенести в плоскости действия на любое место.

· Действие пары на тело не изменится, если ее перенести из плоскости действия в параллельную ей плоскость.

· Действие пары на тело не изменится, если увеличить (уменьшить) величину силы пары, одновременно уменьшая (увеличивая) во столько же раз плечо пары.

Вывод: векторный момент пары сил, действующей на твердое тело, есть свободный вектор, т. е. его можно приложить в любой точке твердого тела.

Рассмотрим сложение пар, произвольно расположенных в пространстве. Докажем теорему:

Система пар, произвольно расположенных в пространстве, эквивалентна одной паре с моментом, равным геометрической сумме моментов слагаемых пар.

Возьмем две пары () и (), расположенные на пересекающихся под произвольным углом плоскостях. Плечи пар примем равными соответственно и . На линии пересечения плоскостей отметим произвольный отрезок АВ и приведем каждую из слагаемых пар к плечу АВ. Произведя сложение соответствующих сил (см. рис.) с и с , получим новую пару (), момент которой будет равен

Рис.2.18 Равнодействующая пар сил

Систему пар сил, действующих на тело, можно, в соответствии с только что доказанной теоремой, заменить одной парой, равной сумме векторов моментов слагаемых пар. Следовательно, равновесие системы пар возможно только при выполнении условия

Проецируя приведенное векторное условие равновесия пар на любые три оси, не лежащие в одной плоскости и не параллельные друг другу, получим скалярные уравнения равновесия системы пар

Если на тело, закрепленное в некоторой точке А, действует сила F, то тело повернется относительно этой точки. Вращательное движение тела характеризуется вращающим моментом М.

Моментом силы F относительно точки А называется величина, численно равная произведению силы на плечо (рис. 1.16):

где l — плечо (перпендикуляр, опущенный из точки на линию действия силы). За единицу вращающего момента принимается 1 Нм: 1кНм=103Нм.

Парой сил называется система двух сил, равных по величи­не, противоположных по направлению и не лежащих на одной прямой (рис. 1.17).

Пара сил оказывает на тело вращающее действие, которое характеризуется враща­ющим моментом М.

Вращающий момент пары сил равен произ­ведению одной из сил пары на плечо:

где h — плечо пары сил (перпендикуляр, восстановленныймежду линиями действия сил). Пара сил на схемах изображается дугооб­разной стрелкой (рис. 1.18). Пару сил нельзя заменить од­ной равнодействующей силой. Пара сил не имеет проекций на оси координат. Если на тело действует несколько пар сил, то их можно за­менить одной равнодействующей парой, момент которой равен алгеб­раической сумме моментов слага­емых пар сил, действующих на тело (рис. 1.19):

Две пары сил называются эквивалентными,если они оказывают на тело одинаковое действие. У эквивалентных пар сил вращающие моменты должны быть одинаковы как по величине, так и по направлению.

Условие равновесия плоской системы пар сил:алгебраическая сумма мо­ментов слагаемых пар сил должна быть равна нулю, т.е.







Дата добавления: 2015-08-27; просмотров: 4528. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ОПРЕДЕЛЕНИЕ ЦЕНТРА ТЯЖЕСТИ ПЛОСКОЙ ФИГУРЫ Сила, с которой тело притягивается к Земле, называется силой тяжести...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.007 сек.) русская версия | украинская версия