Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вспомогательные неравенства





Предложение 1. Пусть и - вещественные числа, связанные соотношением

, (4.1)

тогда для любых неотрицательных чисел и имеет место неравенство

. (4.2)

Доказательство. Можно полагать, что . Рассмотрим функцию , где , a , и согласно (4.1) . Найдем производную . Анализ производной показывает, что наибольшего значения функция достигает при . Поэтому или

. (4.3)

Полагая в неравенстве (4.3) и учитывая связь , получим

. (4.4)

Умножим это неравенство на

. (4.5)

Наконец, учитывая соотношение , найдем

.

Предложение доказано.

Неравенство Гельдера. Для произвольных чисел и справедливо неравенство Гельдера

. (4.6) Доказательство. Введем обозначения

, , , . (4.7)

Запишем неравенство (4.2)

и просуммируем по . В результате получим

 

. (4.8)

Используя соотношения , и переходя от величин , к величинам , , из (4.8) найдем

. (4.9)

Отсюда следует неравенство Гельдера

. (4.10)

Неравенство доказано.

Неравенство Гельдера для бесконечных сумм. Пусть даны бесконечные последовательности чисел и .

Предположим, что сходятся числовые ряды , . Переходя в неравенстве (4.10) к пределу, когда , получим

. (4.11)

Неравенство Коши-Буняковского получается как частный случай неравенства Гельдера, когда

. (4.12) Интегральное неравенство Гельдера. Имеет место неравенство

. (4.13)

Доказательство. Полагаем, что существуют интегралы, входящие в правую часть (4.13). Введем следующие обозначения

, , , . (4.14)

Применяя неравенство (4.2) к функциям и , получим

.

Проинтегрируем это неравенство и учтем обозначения (4.14). В итоге найдем

.

Отсюда следует

.

Неравенство доказано.

Интегральное неравенство Коши-Буняковского получается как частный случай,

когда

. (4.15)

Неравенство Минковского. Для , произвольных чисел и справедливо неравенство Минковского

. (4.16)

Доказательство. Достаточно ограничиться случаем , , .

Имеем

. (4.17)

При справедливость неравенства (4.16) очевидна. Полагая , введем с тем, чтобы . Далее к каждому слагаемому в правой части (4.17) применим неравенство Гельдера. В результате будем иметь

. (4.18) Заметим, что . Умножая обе части (4.18) на

,

получим

.

С учетом равенства получаем окончательное доказательство неравенства Минковского.

Неравенство Минковского для бесконечных сумм. Пусть даны бесконечные последовательности чисел и .

Предположим, что сходятся числовые ряды , . Переходя в неравенстве (4.16) к пределу, когда , получим неравенство Минковского

. (4.19)

 

Интегральное Неравенство Минковского.. Справедливо неравенство

, (4.20)

где , а и - произвольные функции.

Доказательство. Имеем

. (4.21)

Введем число такое что . Применяя к слагаемым в правой части (4.21) интегральное неравенство Гельдера, получим

. (4.22)

Умножая обе части (4.22) на

и учитывая равенство получим

.

Так как , то имеем полное доказательство неравенства Минковского.

 

4.2. Приложение 2.







Дата добавления: 2015-08-29; просмотров: 1569. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия