Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вспомогательные неравенства





Предложение 1. Пусть и - вещественные числа, связанные соотношением

, (4.1)

тогда для любых неотрицательных чисел и имеет место неравенство

. (4.2)

Доказательство. Можно полагать, что . Рассмотрим функцию , где , a , и согласно (4.1) . Найдем производную . Анализ производной показывает, что наибольшего значения функция достигает при . Поэтому или

. (4.3)

Полагая в неравенстве (4.3) и учитывая связь , получим

. (4.4)

Умножим это неравенство на

. (4.5)

Наконец, учитывая соотношение , найдем

.

Предложение доказано.

Неравенство Гельдера. Для произвольных чисел и справедливо неравенство Гельдера

. (4.6) Доказательство. Введем обозначения

, , , . (4.7)

Запишем неравенство (4.2)

и просуммируем по . В результате получим

 

. (4.8)

Используя соотношения , и переходя от величин , к величинам , , из (4.8) найдем

. (4.9)

Отсюда следует неравенство Гельдера

. (4.10)

Неравенство доказано.

Неравенство Гельдера для бесконечных сумм. Пусть даны бесконечные последовательности чисел и .

Предположим, что сходятся числовые ряды , . Переходя в неравенстве (4.10) к пределу, когда , получим

. (4.11)

Неравенство Коши-Буняковского получается как частный случай неравенства Гельдера, когда

. (4.12) Интегральное неравенство Гельдера. Имеет место неравенство

. (4.13)

Доказательство. Полагаем, что существуют интегралы, входящие в правую часть (4.13). Введем следующие обозначения

, , , . (4.14)

Применяя неравенство (4.2) к функциям и , получим

.

Проинтегрируем это неравенство и учтем обозначения (4.14). В итоге найдем

.

Отсюда следует

.

Неравенство доказано.

Интегральное неравенство Коши-Буняковского получается как частный случай,

когда

. (4.15)

Неравенство Минковского. Для , произвольных чисел и справедливо неравенство Минковского

. (4.16)

Доказательство. Достаточно ограничиться случаем , , .

Имеем

. (4.17)

При справедливость неравенства (4.16) очевидна. Полагая , введем с тем, чтобы . Далее к каждому слагаемому в правой части (4.17) применим неравенство Гельдера. В результате будем иметь

. (4.18) Заметим, что . Умножая обе части (4.18) на

,

получим

.

С учетом равенства получаем окончательное доказательство неравенства Минковского.

Неравенство Минковского для бесконечных сумм. Пусть даны бесконечные последовательности чисел и .

Предположим, что сходятся числовые ряды , . Переходя в неравенстве (4.16) к пределу, когда , получим неравенство Минковского

. (4.19)

 

Интегральное Неравенство Минковского.. Справедливо неравенство

, (4.20)

где , а и - произвольные функции.

Доказательство. Имеем

. (4.21)

Введем число такое что . Применяя к слагаемым в правой части (4.21) интегральное неравенство Гельдера, получим

. (4.22)

Умножая обе части (4.22) на

и учитывая равенство получим

.

Так как , то имеем полное доказательство неравенства Минковского.

 

4.2. Приложение 2.







Дата добавления: 2015-08-29; просмотров: 1569. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Закон Гука при растяжении и сжатии   Напряжения и деформации при растяжении и сжатии связаны между собой зависимостью, которая называется законом Гука, по имени установившего этот закон английского физика Роберта Гука в 1678 году...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия