Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

На компактных пространствах





Предложение 6. Образ компактного множества при непрерывном отображении компактен.

Доказательство. Пусть - непрерывное отображение и - компактное множество в . Возьмем произвольную последовательность . Тогда существует последовательность такая, что , .

Последовательности имеет сходящуюся подпоследовательность: , причем . Тогда в силу непрерывности . Предложение доказано.

Предложение 7. Образ компактного множества при непрерывном отображении ограничен и замкнут.

Доказательство следует из предложения 6 и того, что компактное множество в метрическом пространстве ограничено и замкнуто. Предложение доказано.

Предложение 8. Пусть отображает компактное метрическое пространство на числовую прямую . Тогда отображение ограничено и достигает своей точной верхней и точной нижней грани.

Доказательство. Числовое множество , согласно предложения 6, ограничено и замкнуто. А из замкнутости следует, что точная верхняя и точная нижняя грани принадлежат множеству значений. Предложение доказано.

Предложение 9. Любое непрерывное отображение компактного метрического пространства в метрическое пространство является равномерно непрерывным.

Доказательство. Предположим, что не является равномерно непрерывным, т.е. не выполняется (1.15). Построим в символической форме отрицание:

.

Используя это отрицание, для каждого выберем такие и , что

, . (3.4)

Из последовательности выберем сходящуюся подпоследовательность .

Тогда , т.е. .

Но отображение непрерывно, поэтому , и, следовательно, , что противоречит неравенству (3.4). Полученное противоречие и доказывает предложение.

 

4. ПРИЛОЖЕНИЯ

 







Дата добавления: 2015-08-29; просмотров: 674. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия