Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

На компактных пространствах





Предложение 6. Образ компактного множества при непрерывном отображении компактен.

Доказательство. Пусть - непрерывное отображение и - компактное множество в . Возьмем произвольную последовательность . Тогда существует последовательность такая, что , .

Последовательности имеет сходящуюся подпоследовательность: , причем . Тогда в силу непрерывности . Предложение доказано.

Предложение 7. Образ компактного множества при непрерывном отображении ограничен и замкнут.

Доказательство следует из предложения 6 и того, что компактное множество в метрическом пространстве ограничено и замкнуто. Предложение доказано.

Предложение 8. Пусть отображает компактное метрическое пространство на числовую прямую . Тогда отображение ограничено и достигает своей точной верхней и точной нижней грани.

Доказательство. Числовое множество , согласно предложения 6, ограничено и замкнуто. А из замкнутости следует, что точная верхняя и точная нижняя грани принадлежат множеству значений. Предложение доказано.

Предложение 9. Любое непрерывное отображение компактного метрического пространства в метрическое пространство является равномерно непрерывным.

Доказательство. Предположим, что не является равномерно непрерывным, т.е. не выполняется (1.15). Построим в символической форме отрицание:

.

Используя это отрицание, для каждого выберем такие и , что

, . (3.4)

Из последовательности выберем сходящуюся подпоследовательность .

Тогда , т.е. .

Но отображение непрерывно, поэтому , и, следовательно, , что противоречит неравенству (3.4). Полученное противоречие и доказывает предложение.

 

4. ПРИЛОЖЕНИЯ

 







Дата добавления: 2015-08-29; просмотров: 674. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2025 год . (0.016 сек.) русская версия | украинская версия