Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры неполных пространств





Определение 1. Последовательность точек метрического пространства называется фундаментальной или последовательностью Коши, если для любого найдется номер такой, что при .

Предложение 1. Если последовательность сходится к пределу , то она является фундаментальной или последовательностью Коши.

Доказательство. Пусть . Тогда для любого найдется номер такой, что при . Следовательно, для . Предложение доказано.

Обратное утверждение, вообще говоря, неверно. Прежде, чем привести соответствующие примеры, изучим свойство фундаментальных последовательностей.

Определение 2. Подмножество метрического пространства называется ограниченным, если оно содержится в некотором шаре.

Предложение 2. Фундаментальная последовательность ограничена.

Доказательство. Из определения фундаментальной последовательности следует существование такого , что при верно неравенство . Тогда все с содержатся в шаре и, далее, уже все элементы последовательности содержатся в шаре , где

.

Пример 1. Пусть - множество рациональных чисел. Введем расстояние по формуле . В результате станет метрическим пространством: все аксиомы, очевидно, выполняются.

Рассмотрим последовательность . Эта последовательность является фундаментальной. Но она не имеет предела в , так как не является рациональным числом.

Пример 2. На прямой введем расстояние

.

Все аксиомы метрического пространства выполнены. Последовательность является фундаментальной, поскольку

при .

Однако эта последовательность не имеет предела, поскольку для любого имеет место соотношение .

Определение 3. Метрическое пространство называется полным, если каждая фундаментальная последовательность сходится.

Метрические пространства в примерах 1 и 2 не являются полными. Однако произвольное метрическое пространство можно включить некоторым способом в полное метрическое пространство. И доказательству этого положения посвящен следующий параграф. А в заключение этого параграфа приведем предложение, которое часто используется при доказательствах.

Предложение 3. Если фундаментальная последовательность содержит подпоследовательность , сходящуюся к точке , то .

Доказательство. Так как - последовательность Коши, то для всякого найдется такое, что при . Для имеем

.

Поскольку , то, переходя к пределу в последнем неравенстве к пределу, получаем, что . Это и означает, что . Предложение доказано.

 







Дата добавления: 2015-08-29; просмотров: 2294. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия