Студопедия — Сходимость в метрическом пространстве
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сходимость в метрическом пространстве






Определение 10. Точка метрического пространства называется пределом последовательности точек , если , т.е. для любого положительного числа найдется номер такой, что при всех верно неравенство .

Записываем предел в виде или кратко .

Используя понятие шара, дадим следующую характеристику предела: для того, чтобы необходимо и достаточно, чтобы для любого шара с центром в точке и радиуса существовало такое , что при .

Предложение 8. Последовательность точек может иметь только один предел.

Доказательство. Пусть и . Применяя аксиому треугольника, получим . Правая часть этого неравенства стремится к нулю, а левая неотрицательна. Следовательно , а тогда . Предложение доказано.

Предложение 9. Точка метрического пространства принадлежит замыканию множества тогда и только тогда, когда существует последовательность точек множества , сходящаяся к .

Доказательство. Пусть . Если при этом , то в качестве последовательности можно взять . Далее полагаем, что . Тогда точка является предельной точкой множества , ему не принадлежащей. Поэтому в каждом шаре , т.е. при любом , имеется хотя бы одна точка . В результате построили последовательность точек из множества , сходящаяся к точке .

Верно и обратное: если , , то . Действительно, если , то точка принадлежит открытому множеству . Поэтому найдется открытый шар с центром в точке , целиком лежащий во множестве , т.е. не имеющий общих точек с множеством . А это противоречит тому, что последовательность точек из множества сходится к . Предложение доказано.

Предложение 10. Расстояние является непрерывной функцией от и .

Доказательство. Непрерывность означает, что если и , то . Для доказательства воспользуемся неравенством (1.1). Из нее следует, что

.

Предложение доказано.

Предложение 11. В метрическом пространстве всякий замкнутый шар является замкнутым множеством.

Доказательство. Пусть - произвольная предельная точка множества . В силу предложения 9, существует последовательность такая, что , при . Поскольку , , то, пользуясь непрерывностью расстояния и переходя к пределу в последнем неравенстве, получим неравенство . Отсюда вытекает, что , т.е. этот шар содержит все свои предельные точки и поэтому является замкнутым множеством. Предложение доказано.

 







Дата добавления: 2015-08-29; просмотров: 930. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия