Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сходимость в метрическом пространстве





Определение 10. Точка метрического пространства называется пределом последовательности точек , если , т.е. для любого положительного числа найдется номер такой, что при всех верно неравенство .

Записываем предел в виде или кратко .

Используя понятие шара, дадим следующую характеристику предела: для того, чтобы необходимо и достаточно, чтобы для любого шара с центром в точке и радиуса существовало такое , что при .

Предложение 8. Последовательность точек может иметь только один предел.

Доказательство. Пусть и . Применяя аксиому треугольника, получим . Правая часть этого неравенства стремится к нулю, а левая неотрицательна. Следовательно , а тогда . Предложение доказано.

Предложение 9. Точка метрического пространства принадлежит замыканию множества тогда и только тогда, когда существует последовательность точек множества , сходящаяся к .

Доказательство. Пусть . Если при этом , то в качестве последовательности можно взять . Далее полагаем, что . Тогда точка является предельной точкой множества , ему не принадлежащей. Поэтому в каждом шаре , т.е. при любом , имеется хотя бы одна точка . В результате построили последовательность точек из множества , сходящаяся к точке .

Верно и обратное: если , , то . Действительно, если , то точка принадлежит открытому множеству . Поэтому найдется открытый шар с центром в точке , целиком лежащий во множестве , т.е. не имеющий общих точек с множеством . А это противоречит тому, что последовательность точек из множества сходится к . Предложение доказано.

Предложение 10. Расстояние является непрерывной функцией от и .

Доказательство. Непрерывность означает, что если и , то . Для доказательства воспользуемся неравенством (1.1). Из нее следует, что

.

Предложение доказано.

Предложение 11. В метрическом пространстве всякий замкнутый шар является замкнутым множеством.

Доказательство. Пусть - произвольная предельная точка множества . В силу предложения 9, существует последовательность такая, что , при . Поскольку , , то, пользуясь непрерывностью расстояния и переходя к пределу в последнем неравенстве, получим неравенство . Отсюда вытекает, что , т.е. этот шар содержит все свои предельные точки и поэтому является замкнутым множеством. Предложение доказано.

 







Дата добавления: 2015-08-29; просмотров: 963. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия