Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сходимость в метрическом пространстве





Определение 10. Точка метрического пространства называется пределом последовательности точек , если , т.е. для любого положительного числа найдется номер такой, что при всех верно неравенство .

Записываем предел в виде или кратко .

Используя понятие шара, дадим следующую характеристику предела: для того, чтобы необходимо и достаточно, чтобы для любого шара с центром в точке и радиуса существовало такое , что при .

Предложение 8. Последовательность точек может иметь только один предел.

Доказательство. Пусть и . Применяя аксиому треугольника, получим . Правая часть этого неравенства стремится к нулю, а левая неотрицательна. Следовательно , а тогда . Предложение доказано.

Предложение 9. Точка метрического пространства принадлежит замыканию множества тогда и только тогда, когда существует последовательность точек множества , сходящаяся к .

Доказательство. Пусть . Если при этом , то в качестве последовательности можно взять . Далее полагаем, что . Тогда точка является предельной точкой множества , ему не принадлежащей. Поэтому в каждом шаре , т.е. при любом , имеется хотя бы одна точка . В результате построили последовательность точек из множества , сходящаяся к точке .

Верно и обратное: если , , то . Действительно, если , то точка принадлежит открытому множеству . Поэтому найдется открытый шар с центром в точке , целиком лежащий во множестве , т.е. не имеющий общих точек с множеством . А это противоречит тому, что последовательность точек из множества сходится к . Предложение доказано.

Предложение 10. Расстояние является непрерывной функцией от и .

Доказательство. Непрерывность означает, что если и , то . Для доказательства воспользуемся неравенством (1.1). Из нее следует, что

.

Предложение доказано.

Предложение 11. В метрическом пространстве всякий замкнутый шар является замкнутым множеством.

Доказательство. Пусть - произвольная предельная точка множества . В силу предложения 9, существует последовательность такая, что , при . Поскольку , , то, пользуясь непрерывностью расстояния и переходя к пределу в последнем неравенстве, получим неравенство . Отсюда вытекает, что , т.е. этот шар содержит все свои предельные точки и поэтому является замкнутым множеством. Предложение доказано.

 







Дата добавления: 2015-08-29; просмотров: 963. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия