Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Непрерывные отображения в метрических пространствах





Пусть и - два метрических пространства и - некоторое отображение в , которое каждому элементу ставит в соответствие некоторый элемент .

Определение 11. Отображение называется непрерывным в точке , если

. (1.13)

Если отображение непрерывно в каждой точке пространства , то его называют непрерывным на . Справедлива теорема.

Теорема 1. Отображение непрерывно в точке тогда и только тогда, когда для любой последовательности , сходящейся к , последовательность сходится к .

Доказательство. Пусть непрерывно в точке и . По найдем такое , чтобы из неравенства следовало . А для найдем число такое, при выполнено . Тогда и, следовательно, .

Докажем обратное. Пусть для любой последовательности имеем , но отображение не является непрерывным. Построим в символьной форме отрицание (1.13)

. (1.14)

На основе (1.14) выберем так, что , но . Тогда , но не сходится к . Полученное противоречие и доказывает вторую часть теоремы.

Определение 12. Взаимно однозначное отображение пространства на все пространство , для которого обратное отображение также непрерывно, называется гомеоморфным отображением или гомеоморфизмом. При этом соответствующие пространства и называются гомеоморфными.

Примером гомеоморфизма является функция , отображающая прямую на интервал .

Определение 13. Отображение называется равномерно непрерывным, если

. (1.15)

Каждое равномерно непрерывное отображение непрерывно, но обратное неверно. Как доказывается в курсе математического анализа, на действительной прямой функция не является равномерно непрерывной.

Определение 14. Отображение , действующее в метрическом пространстве удовлетворяет условию Гельдера порядка , , если существует такая постоянная , что при всех выполнено неравенство

.

При говорят, что удовлетворяет условию Липшица.

Функция, удовлетворяющая условию Гельдера порядка равномерно непрерывна, но обратное неверно, как показывает следующий пример:

Приведем еще одно определение, которое играет очень важную роль в теории метрических пространств.

Определение 15. Отображение метрического пространства в метрическое пространство называется изометрическим (изометрией), если для любых выполнено равенство

. (1.16)

Изометрическое отображение пространства на все пространство называется изометрическим изоморфизмом, a пространства и называются изометричными.

С точки зрения теории метрических пространств изометричные пространства считаются одинаковыми.

Приведем пример такого отображения. Прямая с метрикой

изометрична интервалу с обычной метрикой. Изометрия задается отображением







Дата добавления: 2015-08-29; просмотров: 918. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия