Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Непрерывные отображения в метрических пространствах





Пусть и - два метрических пространства и - некоторое отображение в , которое каждому элементу ставит в соответствие некоторый элемент .

Определение 11. Отображение называется непрерывным в точке , если

. (1.13)

Если отображение непрерывно в каждой точке пространства , то его называют непрерывным на . Справедлива теорема.

Теорема 1. Отображение непрерывно в точке тогда и только тогда, когда для любой последовательности , сходящейся к , последовательность сходится к .

Доказательство. Пусть непрерывно в точке и . По найдем такое , чтобы из неравенства следовало . А для найдем число такое, при выполнено . Тогда и, следовательно, .

Докажем обратное. Пусть для любой последовательности имеем , но отображение не является непрерывным. Построим в символьной форме отрицание (1.13)

. (1.14)

На основе (1.14) выберем так, что , но . Тогда , но не сходится к . Полученное противоречие и доказывает вторую часть теоремы.

Определение 12. Взаимно однозначное отображение пространства на все пространство , для которого обратное отображение также непрерывно, называется гомеоморфным отображением или гомеоморфизмом. При этом соответствующие пространства и называются гомеоморфными.

Примером гомеоморфизма является функция , отображающая прямую на интервал .

Определение 13. Отображение называется равномерно непрерывным, если

. (1.15)

Каждое равномерно непрерывное отображение непрерывно, но обратное неверно. Как доказывается в курсе математического анализа, на действительной прямой функция не является равномерно непрерывной.

Определение 14. Отображение , действующее в метрическом пространстве удовлетворяет условию Гельдера порядка , , если существует такая постоянная , что при всех выполнено неравенство

.

При говорят, что удовлетворяет условию Липшица.

Функция, удовлетворяющая условию Гельдера порядка равномерно непрерывна, но обратное неверно, как показывает следующий пример:

Приведем еще одно определение, которое играет очень важную роль в теории метрических пространств.

Определение 15. Отображение метрического пространства в метрическое пространство называется изометрическим (изометрией), если для любых выполнено равенство

. (1.16)

Изометрическое отображение пространства на все пространство называется изометрическим изоморфизмом, a пространства и называются изометричными.

С точки зрения теории метрических пространств изометричные пространства считаются одинаковыми.

Приведем пример такого отображения. Прямая с метрикой

изометрична интервалу с обычной метрикой. Изометрия задается отображением







Дата добавления: 2015-08-29; просмотров: 918. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия