Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры метрических пространств





Приведем примеры наиболее часто встречающихся метрических пространств. При этом первые две аксиомы проверяются без труда. Для проверки аксиомы треугольника в ряде случаев используются известные неравенства, имеющие самостоятельное значение. Доказательство таких неравенств, как правило, приводится в приложении.

1. Пространство изолированных точек (или дискретное метрическое пространство) - это произвольное множество, для которого

Все три аксиомы очевидно выполняются.

2. Множество действительных чисел с расстоянием

образует метрическое пространство .

3. Во множестве действительных чисел метрику можно также определить по формуле

Здесь определяется как в примере 2.

4. Евклидово пространство - это множество упорядоченных наборов из действительных чисел с расстоянием

() (1.5)

Пусть , , ; тогда аксиома треугольника записывается в виде

. (1.6)

Полагая , , получаем , а неравенство (1.6) принимает вид

. (1.7)

Это – так называемое неравенство Минковского. Его доказательство приводится в приложении.

5. Пространство всех ограниченных числовых последовательностей . Последовательность ограничена, если найдется такое число , что верно неравенство для всех . Для двух числовых последовательностей и расстояние определяется по формуле

.

Проверим аксиому треугольника. Имеем

.

Отсюда

.

6. Пространство состоит из вещественных последовательностей , для которых . Расстояние в нем определяется по формуле

.

Неравенство треугольника проверяется с помощью неравенства Минковского, приводимого в приложении.

7. Пространство всех числовых последовательностей. Метрику в нем определяем по формуле

.

Этот ряд, очевидно, сходится. Для проверки неравенства треугольника, вначале докажем одно вспомогательное неравенство. Пусть . Тогда . Деля это неравенство на , получим

. (1.8)

Возьмем три последовательности , и . Для каждого справедливо неравенство и с учетом (1.8) имеем

. (1.9)

Умножая крайние члены ряда (1.9) на и суммируя по , получим неравенство треугольника.

8. Пространство всех непрерывных действительных функций , определенных на отрезке , с расстоянием

.

Проверим аксиому треугольника. Имеем

. (1.10)

Так как неравенство (1.10) справедливо при всех , то получим

. Следовательно - метрическое пространство.

9. Пространство состоит из всех измеримых по Лебегу на функций , для которых

,

где - некоторое положительное число.

Расстояние в этом пространстве определяется по формуле

.

Неравенство треугольника проверяется с помощью неравенства Минковского для интегралов, приводимого в приложении.

10. В заключении приведем еще одно пространство. На действительной прямой определим метрику с помощью строго монотонной действительной функции , полагая

.

Аксиомы метрического пространства проверяются без труда.







Дата добавления: 2015-08-29; просмотров: 726. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Studopedia.info - Студопедия - 2014-2026 год . (0.042 сек.) русская версия | украинская версия