Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Примеры метрических пространств





Приведем примеры наиболее часто встречающихся метрических пространств. При этом первые две аксиомы проверяются без труда. Для проверки аксиомы треугольника в ряде случаев используются известные неравенства, имеющие самостоятельное значение. Доказательство таких неравенств, как правило, приводится в приложении.

1. Пространство изолированных точек (или дискретное метрическое пространство) - это произвольное множество, для которого

Все три аксиомы очевидно выполняются.

2. Множество действительных чисел с расстоянием

образует метрическое пространство .

3. Во множестве действительных чисел метрику можно также определить по формуле

Здесь определяется как в примере 2.

4. Евклидово пространство - это множество упорядоченных наборов из действительных чисел с расстоянием

() (1.5)

Пусть , , ; тогда аксиома треугольника записывается в виде

. (1.6)

Полагая , , получаем , а неравенство (1.6) принимает вид

. (1.7)

Это – так называемое неравенство Минковского. Его доказательство приводится в приложении.

5. Пространство всех ограниченных числовых последовательностей . Последовательность ограничена, если найдется такое число , что верно неравенство для всех . Для двух числовых последовательностей и расстояние определяется по формуле

.

Проверим аксиому треугольника. Имеем

.

Отсюда

.

6. Пространство состоит из вещественных последовательностей , для которых . Расстояние в нем определяется по формуле

.

Неравенство треугольника проверяется с помощью неравенства Минковского, приводимого в приложении.

7. Пространство всех числовых последовательностей. Метрику в нем определяем по формуле

.

Этот ряд, очевидно, сходится. Для проверки неравенства треугольника, вначале докажем одно вспомогательное неравенство. Пусть . Тогда . Деля это неравенство на , получим

. (1.8)

Возьмем три последовательности , и . Для каждого справедливо неравенство и с учетом (1.8) имеем

. (1.9)

Умножая крайние члены ряда (1.9) на и суммируя по , получим неравенство треугольника.

8. Пространство всех непрерывных действительных функций , определенных на отрезке , с расстоянием

.

Проверим аксиому треугольника. Имеем

. (1.10)

Так как неравенство (1.10) справедливо при всех , то получим

. Следовательно - метрическое пространство.

9. Пространство состоит из всех измеримых по Лебегу на функций , для которых

,

где - некоторое положительное число.

Расстояние в этом пространстве определяется по формуле

.

Неравенство треугольника проверяется с помощью неравенства Минковского для интегралов, приводимого в приложении.

10. В заключении приведем еще одно пространство. На действительной прямой определим метрику с помощью строго монотонной действительной функции , полагая

.

Аксиомы метрического пространства проверяются без труда.







Дата добавления: 2015-08-29; просмотров: 726. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия