Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Тройной интеграл. Его основные свойства и приложения. Вычисление тройного интеграла





Рассмотрим кубируемую область в трехмерном пространстве . Разбиение на части осуществляется непрерывными поверхностями. Диаметр разбиения определяется аналогично двумерному случаю. Также, по аналогии, можно определить для функции , разбиения области и выбранных точек интегральную сумму , где обозначает объем области .

Определение. Пусть такое число, что . Тогда мы говорим, что интегрируема на , число есть интеграл по области и обозначаем это так: .

Как и в случае двойного интеграла, выполняются аналогичные свойства 1-6. Можно доказать, что если непрерывна на , то она интегрируема на . Точно также можно убедиться в том, что если точки разрыва лежат на конечном числе непрерывных поверхностей, лежащих в и разбивающих на кубируемые области, то интегрируема на .

Вычисление тройного интеграла производится по следующему правилу.

Теорема. Пусть задана следующими неравенствами: , . - квадрируемая область на плоскости, - непрерывные. Тогда

Замечание. Если область задана неравенствами , где - непрерывные функции, то

Сформулируем общую теорему о замене переменных.

Теорема. Пусть отображение устанавливает взаимно однозначное соответствие между областями и , причем функции - непрерывно дифференцируемые и ни в одной точке . Пусть - непрерывная на функция. Тогда

Как и для двойного интеграла, теорема остается верна в случае нарушения ее условий на множестве нулевого объема.

 

13 Трехкратный интеграл и его свойства (есть)

14 Криволинейный интеграл







Дата добавления: 2015-08-30; просмотров: 924. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия