Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Вычисление двойного интеграла. Двукратный (повторный) интеграл.





16.1.4.1. Определение простой (правильной) области. Область на плоскости Oxy будем называть простой (правильной) в направлении оси Oy, если любая прямая, проходящая через внутреннюю точку области и параллельная оси Oy, пересекает границу в двух точках.

Аналогично определяется область, простая (правильная) в направлении оси Ox: любая прямая, проходящая через внутреннюю точку области и параллельная оси , пересекает границу в двух точках.

Область, правильную (простую) в направлении обеих осей, будем называть правильной.

 
   


Ограниченную замкнутую область, правильную в направлении оси Oy, можно описать неравенствами. Числа и существуют вследствие ограниченности области, функция образована нижними точками пересечения прямой при с границей области, функция - верхними точками пересечения этой прямой с границей области:

Аналогичным образом область, ограниченную, замкнутую и правильную в направлении оси , можно описать неравенствами. Функция образована левыми точками пересечения прямой при с границей области, функция - правыми точками пересечения этой прямой с границей области.

Для правильной области (т.е. области, правильной в направлении обеих осей) существуют оба способа представления: и, и.

16.1.4.2. Двукратный (повторный) интеграл. Пусть - область, простая в направлении оси Oy. Рассмотрим выражение. Эта конструкция определяется через два обычных определённых интеграла. После интегрирования по у во внутреннем интеграле (переменная х при этом рассматривается как постоянная) и подстановки по у в пределах от до получается функция, зависящая только от х, которая интегрируется в пределах от a до b. В дальнейшем мы будем обычно записывать этот объект без внутренних скобок:

.

Можно показать, что двукратный интеграл обладает всеми свойствами двойного интеграла:

Свойства линейности и интегрирования неравенств следуют из этих свойств определённого интеграла; интеграл от единичной функции даёт площадь области:;

теоремы об оценке и о среднем следуют из перечисленных свойств. Единственное свойство, с которым придётся повозиться - это свойство аддитивности. Мы докажем его в простой, но достаточной для нас форме: если область разбита на две подобласти и прямой, параллельной одной из координатных осей, то двукратный интеграл по области равен сумме интегралов по и:.

Первый случай: прямая параллельна оси Oy. Тогда (аддитивность внешнего интеграла).

Второй случай: прямая параллельна оси . Воспользуемся сначала аддитивностью внешнего интеграла:

 

 

(теперь применим свойство аддитивности для внутреннего интеграла в среднем слагаемом) = (применяем свойство линейности для внешнего интеграла в среднем слагаемом и перегруппировываем сумму)=

(первая фигурная скобка даёт повторный интеграл по, второй - по).

Понятно, что воэможны различные случаи взаимного расположения прямых,, и функций,, но логика доказательства во всех случаях такая же.

Обобщим доказанное свойство. Пусть прямая разбивает область на две подобласти и. Проведём ещё одну прямую, параллельную какой-либо координатной оси. Пусть эта прямая разбивает на и; - на и. По доказанному,,, поэтому. Продолжая рассуждать также, убеждаемся в справедливости следующего утверждения: если область с помощью прямых, параллельных координатным осям, разбита на подобласти, то.

16.1.4.3. Теорема о переходе от двойного интеграла к повторному. Пусть - простая в направлении оси Oy область. Тогда двойной интеграл от непрерывной функции по области равна повторному интегралу от той же функции по области:.

Док-во. Разобьём область с помощью прямых, параллельных координатным осям, на подобласти. По доказанному выше,. К каждому из итегралов применим теорему о среднем: в любой области найдётся точка такая, что. Следовательно,. В последнем равенстве справа стоит интегральная сумма для двойного интеграла. Будем мельчить разбиение области так, чтобы. Вследствие непрерывности функции по теореме существования интегральная сумма при этом стремится к двойному интегралу, т.е. в пределе получим, что и требовалось доказать.

Если область правильная в направлении оси , то аналогично доказывается формула. Если правильна в направлении обеих осей, то для вычисления двойного интеграла можно применять любую из эти формул:.

Если область не является правильной, её разбивают на правильные подобласти.







Дата добавления: 2015-08-30; просмотров: 782. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия