Вычисление двойного интеграла. Двукратный (повторный) интеграл.
16.1.4.1. Определение простой (правильной) области. Область на плоскости Oxy будем называть простой (правильной) в направлении оси Oy, если любая прямая, проходящая через внутреннюю точку области и параллельная оси Oy, пересекает границу в двух точках. Аналогично определяется область, простая (правильная) в направлении оси Ox: любая прямая, проходящая через внутреннюю точку области и параллельная оси Oх, пересекает границу в двух точках. Область, правильную (простую) в направлении обеих осей, будем называть правильной.
Аналогичным образом область, ограниченную, замкнутую и правильную в направлении оси Oх, можно описать неравенствами. Функция образована левыми точками пересечения прямой при с границей области, функция - правыми точками пересечения этой прямой с границей области. Для правильной области (т.е. области, правильной в направлении обеих осей) существуют оба способа представления: и, и. 16.1.4.2. Двукратный (повторный) интеграл. Пусть - область, простая в направлении оси Oy. Рассмотрим выражение. Эта конструкция определяется через два обычных определённых интеграла. После интегрирования по у во внутреннем интеграле (переменная х при этом рассматривается как постоянная) и подстановки по у в пределах от до получается функция, зависящая только от х, которая интегрируется в пределах от a до b. В дальнейшем мы будем обычно записывать этот объект без внутренних скобок: . Можно показать, что двукратный интеграл обладает всеми свойствами двойного интеграла: Свойства линейности и интегрирования неравенств следуют из этих свойств определённого интеграла; интеграл от единичной функции даёт площадь области:; теоремы об оценке и о среднем следуют из перечисленных свойств. Единственное свойство, с которым придётся повозиться - это свойство аддитивности. Мы докажем его в простой, но достаточной для нас форме: если область разбита на две подобласти и прямой, параллельной одной из координатных осей, то двукратный интеграл по области равен сумме интегралов по и:. Первый случай: прямая параллельна оси Oy. Тогда (аддитивность внешнего интеграла). Второй случай: прямая параллельна оси Oх. Воспользуемся сначала аддитивностью внешнего интеграла:
(теперь применим свойство аддитивности для внутреннего интеграла в среднем слагаемом) = (применяем свойство линейности для внешнего интеграла в среднем слагаемом и перегруппировываем сумму)= (первая фигурная скобка даёт повторный интеграл по, второй - по). Понятно, что воэможны различные случаи взаимного расположения прямых,, и функций,, но логика доказательства во всех случаях такая же. Обобщим доказанное свойство. Пусть прямая разбивает область на две подобласти и. Проведём ещё одну прямую, параллельную какой-либо координатной оси. Пусть эта прямая разбивает на и; - на и. По доказанному,,, поэтому. Продолжая рассуждать также, убеждаемся в справедливости следующего утверждения: если область с помощью прямых, параллельных координатным осям, разбита на подобласти, то. 16.1.4.3. Теорема о переходе от двойного интеграла к повторному. Пусть - простая в направлении оси Oy область. Тогда двойной интеграл от непрерывной функции по области равна повторному интегралу от той же функции по области:. Док-во. Разобьём область с помощью прямых, параллельных координатным осям, на подобласти. По доказанному выше,. К каждому из итегралов применим теорему о среднем: в любой области найдётся точка такая, что. Следовательно,. В последнем равенстве справа стоит интегральная сумма для двойного интеграла. Будем мельчить разбиение области так, чтобы. Вследствие непрерывности функции по теореме существования интегральная сумма при этом стремится к двойному интегралу, т.е. в пределе получим, что и требовалось доказать. Если область правильная в направлении оси Oх, то аналогично доказывается формула. Если правильна в направлении обеих осей, то для вычисления двойного интеграла можно применять любую из эти формул:. Если область не является правильной, её разбивают на правильные подобласти.
|