Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. · Необходимость.Пусть Pdx + Qdy = du(x, y)





· Необходимость. Пусть Pdx + Qdy = du (x, y). Тогда справедливо соответствие

и .

Продифференцируем каждое из этих равенств:

.

По свойству смешанных производных правые части последних соотношений равны и, в силу их непрерывности (по условию теоремы), в любой точке области D выполняется равенство

.

Необходимость доказана.

· Достаточность. Пусть в области D выполняется тождественное равенство

.

Но тогда по теореме 1 линейный интеграл (15) не зависит от пути интегрирования. Установим правило нахождения первообразной функции u (х, у) по её полному дифференциалу, тем самым доказав её существование.

Выберем в области D какую-то фиксированную точку А (х 0, у 0) и переменную точку М (х, у). Линейный интеграл (15) будет функцией верхнего предела

§ Пусть точка М переместилась (см. рис. 10) в положение M 1(x + x, y). Тогда функция Ф(х, у) получит частное приращение по переменной х

(20)

Поскольку переменная у не получила приращения на отрезке ММ 1 ( у = 0, у = const), то подынтегральное выражение в последнем интеграле зависит от одной переменной х, а интеграл (20) является определённым.


Рис. 10

Применим к нему теорему о среднем:

где .

Разделив на х, получаем

или, переходя к пределу при х 0, в силу непрерывности функции Р (х, у), имеем

§ Пусть теперь точка М движется параллельно оси оу, т. е. функция Ф(х, у) получает приращение по переменной у, при этом х = 0:

где М 2(х, у + у).

Проводя рассуждения, аналогичные предыдущим, приходим к заключению, что

Сложив результаты, получаем формулу полного дифференциала некоторой функции Ф(х, у)

Интегрируя, находим одну из первообразных линейного интеграла

Сформулируем правило отыскания функции. Поскольку подынтегральное выражение - полный дифференциал некоторой функции, линейный интеграл не зависит от пути интегрирования. Выберем самый удобный путь, соединяющий точки А (х 0, у 0) и М (х, у), например, ломаную АВМ с отрезками, параллельными осям (см. рис. 11). Исследуем эти отрезки:


Рис.11

Переходим к вычислению интеграла

(21)

Теорема доказана. Мы получили метод отыскания функции поеё полному дифференциалу, доказав таким образом факт существования такой функции.

Последнюю формулу чаще записывают в виде

(22)

Получим ещё один результат, проанализировав формулу (21), каждое слагаемое которой является определённым интегралом с переменным верхним пределом, подынтегральное выражение каждого из них зависит от переменной t. Применим к

ним формулу Ньютона-Лейбница, учитывая, что подынтегральное выражение криволинейного интеграла в левой части равенства есть полный дифференциал некоторой функции, т. е.

Откуда следует, что

Тогда

Следовательно,

или

Последнее равенство является формулой Ньютона-Лейбница для криволинейного интеграла, подтверждающей вывод: интеграл от полного дифференциала не зависит от пути интегрирования, а зависит только от начальной и конечной точек интегрирования.

 

19 Поверхностный интеграл.







Дата добавления: 2015-08-30; просмотров: 932. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия