Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. · Необходимость.Пусть Pdx + Qdy = du(x, y)





· Необходимость. Пусть Pdx + Qdy = du (x, y). Тогда справедливо соответствие

и .

Продифференцируем каждое из этих равенств:

.

По свойству смешанных производных правые части последних соотношений равны и, в силу их непрерывности (по условию теоремы), в любой точке области D выполняется равенство

.

Необходимость доказана.

· Достаточность. Пусть в области D выполняется тождественное равенство

.

Но тогда по теореме 1 линейный интеграл (15) не зависит от пути интегрирования. Установим правило нахождения первообразной функции u (х, у) по её полному дифференциалу, тем самым доказав её существование.

Выберем в области D какую-то фиксированную точку А (х 0, у 0) и переменную точку М (х, у). Линейный интеграл (15) будет функцией верхнего предела

§ Пусть точка М переместилась (см. рис. 10) в положение M 1(x + x, y). Тогда функция Ф(х, у) получит частное приращение по переменной х

(20)

Поскольку переменная у не получила приращения на отрезке ММ 1 ( у = 0, у = const), то подынтегральное выражение в последнем интеграле зависит от одной переменной х, а интеграл (20) является определённым.


Рис. 10

Применим к нему теорему о среднем:

где .

Разделив на х, получаем

или, переходя к пределу при х 0, в силу непрерывности функции Р (х, у), имеем

§ Пусть теперь точка М движется параллельно оси оу, т. е. функция Ф(х, у) получает приращение по переменной у, при этом х = 0:

где М 2(х, у + у).

Проводя рассуждения, аналогичные предыдущим, приходим к заключению, что

Сложив результаты, получаем формулу полного дифференциала некоторой функции Ф(х, у)

Интегрируя, находим одну из первообразных линейного интеграла

Сформулируем правило отыскания функции. Поскольку подынтегральное выражение - полный дифференциал некоторой функции, линейный интеграл не зависит от пути интегрирования. Выберем самый удобный путь, соединяющий точки А (х 0, у 0) и М (х, у), например, ломаную АВМ с отрезками, параллельными осям (см. рис. 11). Исследуем эти отрезки:


Рис.11

Переходим к вычислению интеграла

(21)

Теорема доказана. Мы получили метод отыскания функции поеё полному дифференциалу, доказав таким образом факт существования такой функции.

Последнюю формулу чаще записывают в виде

(22)

Получим ещё один результат, проанализировав формулу (21), каждое слагаемое которой является определённым интегралом с переменным верхним пределом, подынтегральное выражение каждого из них зависит от переменной t. Применим к

ним формулу Ньютона-Лейбница, учитывая, что подынтегральное выражение криволинейного интеграла в левой части равенства есть полный дифференциал некоторой функции, т. е.

Откуда следует, что

Тогда

Следовательно,

или

Последнее равенство является формулой Ньютона-Лейбница для криволинейного интеграла, подтверждающей вывод: интеграл от полного дифференциала не зависит от пути интегрирования, а зависит только от начальной и конечной точек интегрирования.

 

19 Поверхностный интеграл.







Дата добавления: 2015-08-30; просмотров: 932. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия