Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. · Необходимость.Пусть Pdx + Qdy = du(x, y)





· Необходимость. Пусть Pdx + Qdy = du (x, y). Тогда справедливо соответствие

и .

Продифференцируем каждое из этих равенств:

.

По свойству смешанных производных правые части последних соотношений равны и, в силу их непрерывности (по условию теоремы), в любой точке области D выполняется равенство

.

Необходимость доказана.

· Достаточность. Пусть в области D выполняется тождественное равенство

.

Но тогда по теореме 1 линейный интеграл (15) не зависит от пути интегрирования. Установим правило нахождения первообразной функции u (х, у) по её полному дифференциалу, тем самым доказав её существование.

Выберем в области D какую-то фиксированную точку А (х 0, у 0) и переменную точку М (х, у). Линейный интеграл (15) будет функцией верхнего предела

§ Пусть точка М переместилась (см. рис. 10) в положение M 1(x + x, y). Тогда функция Ф(х, у) получит частное приращение по переменной х

(20)

Поскольку переменная у не получила приращения на отрезке ММ 1 ( у = 0, у = const), то подынтегральное выражение в последнем интеграле зависит от одной переменной х, а интеграл (20) является определённым.


Рис. 10

Применим к нему теорему о среднем:

где .

Разделив на х, получаем

или, переходя к пределу при х 0, в силу непрерывности функции Р (х, у), имеем

§ Пусть теперь точка М движется параллельно оси оу, т. е. функция Ф(х, у) получает приращение по переменной у, при этом х = 0:

где М 2(х, у + у).

Проводя рассуждения, аналогичные предыдущим, приходим к заключению, что

Сложив результаты, получаем формулу полного дифференциала некоторой функции Ф(х, у)

Интегрируя, находим одну из первообразных линейного интеграла

Сформулируем правило отыскания функции. Поскольку подынтегральное выражение - полный дифференциал некоторой функции, линейный интеграл не зависит от пути интегрирования. Выберем самый удобный путь, соединяющий точки А (х 0, у 0) и М (х, у), например, ломаную АВМ с отрезками, параллельными осям (см. рис. 11). Исследуем эти отрезки:


Рис.11

Переходим к вычислению интеграла

(21)

Теорема доказана. Мы получили метод отыскания функции поеё полному дифференциалу, доказав таким образом факт существования такой функции.

Последнюю формулу чаще записывают в виде

(22)

Получим ещё один результат, проанализировав формулу (21), каждое слагаемое которой является определённым интегралом с переменным верхним пределом, подынтегральное выражение каждого из них зависит от переменной t. Применим к

ним формулу Ньютона-Лейбница, учитывая, что подынтегральное выражение криволинейного интеграла в левой части равенства есть полный дифференциал некоторой функции, т. е.

Откуда следует, что

Тогда

Следовательно,

или

Последнее равенство является формулой Ньютона-Лейбница для криволинейного интеграла, подтверждающей вывод: интеграл от полного дифференциала не зависит от пути интегрирования, а зависит только от начальной и конечной точек интегрирования.

 

19 Поверхностный интеграл.







Дата добавления: 2015-08-30; просмотров: 932. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия