Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обобщенно - однородные уравнения.





Рассмотрим уравнения вида

. (5)

Уравнение (5) называется обобщенно - однородным, если существуют числа k и m такие, что

.

С помощью замены (при x<0 полагаем )

,

где t - новая независимая переменная, u - новая искомая функция, уравнение (5) приводит к уравнению, не содержащему независимой переменной t и, следовательно, допускающему понижение порядка на единицу (см. п. 2).

Производные при данной замене преобразуются по формулам

......................................................................

.

Подстановка последних равенств в (5) дает уравнение вида

,

которое явно не содержит независимую переменную t.

Пример 4. Решить уравнение .

Решение.

Проверим, что уравнение является однородным. С этой целью вместо переменных подставим в выражение для функции соответственно и, если это возможно, подберем значение k таким образом, чтобы выполнялось тождество

.

Очевидно, что такое тождество выполняется лишь при условии 4k=2, т.е при k=1/2 (при этом m=2). Следовательно, данное уравнение обобщенно однородное. Применив подстановку , получим уравнение

.

Последнее уравнение явно не содержит переменную t, поэтому посредством замены понижаем порядок на единицу:

.

Проинтегрировав последнее уравнение, находим

.

Далее, интегрируем уравнение

:

и получаем окончательно решения уравнение в виде

.







Дата добавления: 2015-08-30; просмотров: 949. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия