Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение 4





Определителем Вронского системы функций y 1(х), y 2(х) ,..., ym (х)называется функциональный определитель порядка m:

 

= W [ y 1, y 2, ..., ym ]. (7)

П р и м е р 3. Найти определитель Вронского системы функций:

а) у 1(х) = х, у 2(х) = 3 х; б) у 1(х) = sinх, у 2(х) = cosх.

Решение. В случае (а) W [ x, 3 x ] = . Для системы функций у 1(х) = sinх, у 2(х) = cosх имеем

 

W [ sinx, cosx ] =

 

 

Теорема 2 (необходимое условие линейной зависимости)

Если система функций y1(х), y2(х),..., ym(х)линейно зависима на интервале(а, b), то ее определитель Вронского W[y1, y2,..., ym] º 0 на (a, b).

В примере 2 (а) мы установили линейную зависимость системы функций, а в примере 3 (а) показали, что ее определитель Вронского равен нулю.

Данное условие является необходимым, но недостаточным. Сформулируем необходимое и достаточное условие линейной зависимости не для произвольной системы функций, а для решений линейного однородного дифференциального уравнения.

Теорема 3

Функции y1(х), y2(х),..., yn(х) - решения линейного дифференциального уравнения (4), все коэффициенты которого непрерывны на интервале (а, b), образуют линейно независимую систему тогда и только тогда, когда ее определитель Вронского W[y1, y2,..., ym] ¹0 ни в одной точке интервала (a, b).

 

П р и м е р 4. Очевидно, что функции у 1(х) = sinх, у 2(х) = cosх являются решениями уравнения у¢¢ (х) + у (х) = 0. По теореме 3 мы можем утверждать, что они линейно независимы на всей числовой оси, так как W [ sinx, cosx ] º -1 (см. пример 3).

Для установления линейной независимости решений линейного однородного дифференциального уравнения нужно по теореме 3 проверить, что определитель Вронского ни в одной точке интервала не равен нулю. В этом заключается неудобство данного критерия. Однако его можно упростить, если воспользоваться формулой Остроградского - Лиувилля:

W [ y 1(х), y 2(х) ,..., уn (x)] = W [ y 1(х 0), y 2(х 0) ,..., уn (x 0)] , (8)

 

где y 1(х), y 2(х), ..., уn (x)- решения линейного однородного дифференциального уравнения (4), в котором все коэффициенты непрерывны на интервале (а, b), х 0Î (а, b) и р 1(t) - коэффициент перед производной (n - 1)-го порядка в (4).

Действительно, равенство (8) означает: из того, что определитель Вронского не обращается в нуль в некоторой точке х 0Î (а, b) следует, что он не равен нулю ни в какой другой точке этого интервала, так как функция ех ¹ 0 при любом х. Таким образом, получаем

Следствие. Совокупность n решений линейного однородного дифференциального уравнения порядка n с непрерывными на (а, b) коэффициентами линейно независима тогда и только тогда, когда определитель Вронского отличен от нуля хотя бы в одной точке этого интервала.







Дата добавления: 2015-08-30; просмотров: 798. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия