Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение 4





Определителем Вронского системы функций y 1(х), y 2(х) ,..., ym (х)называется функциональный определитель порядка m:

 

= W [ y 1, y 2, ..., ym ]. (7)

П р и м е р 3. Найти определитель Вронского системы функций:

а) у 1(х) = х, у 2(х) = 3 х; б) у 1(х) = sinх, у 2(х) = cosх.

Решение. В случае (а) W [ x, 3 x ] = . Для системы функций у 1(х) = sinх, у 2(х) = cosх имеем

 

W [ sinx, cosx ] =

 

 

Теорема 2 (необходимое условие линейной зависимости)

Если система функций y1(х), y2(х),..., ym(х)линейно зависима на интервале(а, b), то ее определитель Вронского W[y1, y2,..., ym] º 0 на (a, b).

В примере 2 (а) мы установили линейную зависимость системы функций, а в примере 3 (а) показали, что ее определитель Вронского равен нулю.

Данное условие является необходимым, но недостаточным. Сформулируем необходимое и достаточное условие линейной зависимости не для произвольной системы функций, а для решений линейного однородного дифференциального уравнения.

Теорема 3

Функции y1(х), y2(х),..., yn(х) - решения линейного дифференциального уравнения (4), все коэффициенты которого непрерывны на интервале (а, b), образуют линейно независимую систему тогда и только тогда, когда ее определитель Вронского W[y1, y2,..., ym] ¹0 ни в одной точке интервала (a, b).

 

П р и м е р 4. Очевидно, что функции у 1(х) = sinх, у 2(х) = cosх являются решениями уравнения у¢¢ (х) + у (х) = 0. По теореме 3 мы можем утверждать, что они линейно независимы на всей числовой оси, так как W [ sinx, cosx ] º -1 (см. пример 3).

Для установления линейной независимости решений линейного однородного дифференциального уравнения нужно по теореме 3 проверить, что определитель Вронского ни в одной точке интервала не равен нулю. В этом заключается неудобство данного критерия. Однако его можно упростить, если воспользоваться формулой Остроградского - Лиувилля:

W [ y 1(х), y 2(х) ,..., уn (x)] = W [ y 1(х 0), y 2(х 0) ,..., уn (x 0)] , (8)

 

где y 1(х), y 2(х), ..., уn (x)- решения линейного однородного дифференциального уравнения (4), в котором все коэффициенты непрерывны на интервале (а, b), х 0Î (а, b) и р 1(t) - коэффициент перед производной (n - 1)-го порядка в (4).

Действительно, равенство (8) означает: из того, что определитель Вронского не обращается в нуль в некоторой точке х 0Î (а, b) следует, что он не равен нулю ни в какой другой точке этого интервала, так как функция ех ¹ 0 при любом х. Таким образом, получаем

Следствие. Совокупность n решений линейного однородного дифференциального уравнения порядка n с непрерывными на (а, b) коэффициентами линейно независима тогда и только тогда, когда определитель Вронского отличен от нуля хотя бы в одной точке этого интервала.







Дата добавления: 2015-08-30; просмотров: 798. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия