Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Определение 4





Определителем Вронского системы функций y 1(х), y 2(х) ,..., ym (х)называется функциональный определитель порядка m:

 

= W [ y 1, y 2, ..., ym ]. (7)

П р и м е р 3. Найти определитель Вронского системы функций:

а) у 1(х) = х, у 2(х) = 3 х; б) у 1(х) = sinх, у 2(х) = cosх.

Решение. В случае (а) W [ x, 3 x ] = . Для системы функций у 1(х) = sinх, у 2(х) = cosх имеем

 

W [ sinx, cosx ] =

 

 

Теорема 2 (необходимое условие линейной зависимости)

Если система функций y1(х), y2(х),..., ym(х)линейно зависима на интервале(а, b), то ее определитель Вронского W[y1, y2,..., ym] º 0 на (a, b).

В примере 2 (а) мы установили линейную зависимость системы функций, а в примере 3 (а) показали, что ее определитель Вронского равен нулю.

Данное условие является необходимым, но недостаточным. Сформулируем необходимое и достаточное условие линейной зависимости не для произвольной системы функций, а для решений линейного однородного дифференциального уравнения.

Теорема 3

Функции y1(х), y2(х),..., yn(х) - решения линейного дифференциального уравнения (4), все коэффициенты которого непрерывны на интервале (а, b), образуют линейно независимую систему тогда и только тогда, когда ее определитель Вронского W[y1, y2,..., ym] ¹0 ни в одной точке интервала (a, b).

 

П р и м е р 4. Очевидно, что функции у 1(х) = sinх, у 2(х) = cosх являются решениями уравнения у¢¢ (х) + у (х) = 0. По теореме 3 мы можем утверждать, что они линейно независимы на всей числовой оси, так как W [ sinx, cosx ] º -1 (см. пример 3).

Для установления линейной независимости решений линейного однородного дифференциального уравнения нужно по теореме 3 проверить, что определитель Вронского ни в одной точке интервала не равен нулю. В этом заключается неудобство данного критерия. Однако его можно упростить, если воспользоваться формулой Остроградского - Лиувилля:

W [ y 1(х), y 2(х) ,..., уn (x)] = W [ y 1(х 0), y 2(х 0) ,..., уn (x 0)] , (8)

 

где y 1(х), y 2(х), ..., уn (x)- решения линейного однородного дифференциального уравнения (4), в котором все коэффициенты непрерывны на интервале (а, b), х 0Î (а, b) и р 1(t) - коэффициент перед производной (n - 1)-го порядка в (4).

Действительно, равенство (8) означает: из того, что определитель Вронского не обращается в нуль в некоторой точке х 0Î (а, b) следует, что он не равен нулю ни в какой другой точке этого интервала, так как функция ех ¹ 0 при любом х. Таким образом, получаем

Следствие. Совокупность n решений линейного однородного дифференциального уравнения порядка n с непрерывными на (а, b) коэффициентами линейно независима тогда и только тогда, когда определитель Вронского отличен от нуля хотя бы в одной точке этого интервала.







Дата добавления: 2015-08-30; просмотров: 798. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия