Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение в точных производных.





Рассмотрим уравнения вида

, (1)

левые части которых являются точными производными от некоторой функции , т.е.

.

Такие уравнения называются уравнениями в точных производных. Из последнего равенства следует, что соотношение

является первым интегралом уравнения (1) - уравнением (n-1) - го порядка относительно искомой функции. Таким образом, уравнение в точных производных допускают понижение порядка на единицу.

Пример 5. Решить уравнение .

Решение.

Имеем

,

откуда следует, что

,

или

.

Это линейное уравнение первого порядка, и его общее решение имеет вид

.

 

27 Линейные однородные уравнения. Определения и общие свойства.

Используя свойства линейного дифференциального оператора, сформулируем свойство решений линейного дифференциального уравнения (4), которое дает ключ к пониманию структуры (устройства) общего решения.

Если h (x) и g (x) - решения линейного однородного уравнения (4), то для любых констант С 1 и С 2 функция j (х) = С 1 h (x) + С 2 g (x) - решение уравнения (4).

Известно, что общее решение уравнения n -го порядка содержит n произвольных констант. В связи с этим возникают следующие вопросы. Можно ли найти такие n решений j 1(х), j 2(х) ,..., jn (х), что функция

 

j (х) = , (5)

 

где Сi (i = 1, 2 ,..., n) - константы, будет общим решением линейного однородного уравнения (4)? Какими свойствами должны обладать функции ji (х), чтобы составленная из них по формуле (5) функция являлась общим решением?

На основании свойства решений линейных однородных дифференциальных уравнений можно сделать вывод, что множество всех решений данного уравнения образует линейное пространство. Известно, что в любом линейном пространстве каждый элемент является линейной комбинацией базиса.

Введем понятия линейной зависимой и линейной независимой системы функций.







Дата добавления: 2015-08-30; просмотров: 3150. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Алгоритм выполнения манипуляции Приемы наружного акушерского исследования. Приемы Леопольда – Левицкого. Цель...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия