Студопедия — Уравнение в точных производных.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение в точных производных.






Рассмотрим уравнения вида

, (1)

левые части которых являются точными производными от некоторой функции , т.е.

.

Такие уравнения называются уравнениями в точных производных. Из последнего равенства следует, что соотношение

является первым интегралом уравнения (1) - уравнением (n-1) - го порядка относительно искомой функции. Таким образом, уравнение в точных производных допускают понижение порядка на единицу.

Пример 5. Решить уравнение .

Решение.

Имеем

,

откуда следует, что

,

или

.

Это линейное уравнение первого порядка, и его общее решение имеет вид

.

 

27 Линейные однородные уравнения. Определения и общие свойства.

Используя свойства линейного дифференциального оператора, сформулируем свойство решений линейного дифференциального уравнения (4), которое дает ключ к пониманию структуры (устройства) общего решения.

Если h (x) и g (x) - решения линейного однородного уравнения (4), то для любых констант С 1 и С 2 функция j (х) = С 1 h (x) + С 2 g (x) - решение уравнения (4).

Известно, что общее решение уравнения n -го порядка содержит n произвольных констант. В связи с этим возникают следующие вопросы. Можно ли найти такие n решений j 1(х), j 2(х) ,..., jn (х), что функция

 

j (х) = , (5)

 

где Сi (i = 1, 2 ,..., n) - константы, будет общим решением линейного однородного уравнения (4)? Какими свойствами должны обладать функции ji (х), чтобы составленная из них по формуле (5) функция являлась общим решением?

На основании свойства решений линейных однородных дифференциальных уравнений можно сделать вывод, что множество всех решений данного уравнения образует линейное пространство. Известно, что в любом линейном пространстве каждый элемент является линейной комбинацией базиса.

Введем понятия линейной зависимой и линейной независимой системы функций.







Дата добавления: 2015-08-30; просмотров: 2852. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

ЛЕКАРСТВЕННЫЕ ФОРМЫ ДЛЯ ИНЪЕКЦИЙ К лекарственным формам для инъекций относятся водные, спиртовые и масляные растворы, суспензии, эмульсии, ново­галеновые препараты, жидкие органопрепараты и жидкие экс­тракты, а также порошки и таблетки для имплантации...

Тема 5. Организационная структура управления гостиницей 1. Виды организационно – управленческих структур. 2. Организационно – управленческая структура современного ТГК...

Studopedia.info - Студопедия - 2014-2023 год . (0.012 сек.) русская версия | украинская версия