Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство





· Достаточность. Пусть равенство (16) выполняется в области D. Докажем, что криволинейный интеграл (15) по любому замкнутому контуру L, лежащему в области D, равен нулю. Возьмём произвольный замкнутый контур L*, ограничивающий область D*, целиком лежащей внутри области D, и применим к нему формулу Грина

Так как по условию , то двойной интеграл равен рулю. Следовательно, равен нулю и криволинейный интеграл по контуру L*, что и требовалось доказать.

· Необходимость. Пусть интеграл

не зависит от пути интегрирования. Надо доказать, что выполняется равенство (16), что, в свою очередь, вызывает равенство нулю двойного интеграла (по теореме Грина)

(17)

Воспользуемся методом доказательства “от противного”. Предположим, что равенства (16) и (17) не выполняются, т.е. в области D, ограниченной контуром L, нашлась какая-то точка М, в которой

(18)


Рис. 9

Пусть для определённости эта разность положительна. Тогда, в силу непрерывности частных производных, эта разность знакопостоянна в некоторой окрестности точки М и сохраняет тот же знак, что и в самой точке. Обозначим эту окрестность D*, а ограничивающий её контур есть L* (см рис. 9). Составим двойной интеграл по области D* от разности (18). По свойству (cм. гл. 12) интеграл сохранит знак подынтегральной функции

По формуле Грина тогда и линейный интеграл (15) будет иметь этот же знак:

Но это обозначает, что криволинейный интеграл по замкнутому контуру отличен от нуля, т.е. зависит от пути интегрирования, что противоречит исходному условию. Отсюда следует, что наше предположение неверно. Теорема доказана.

Заметим, что дифференциальное выражение

P (x, y) dx + Q (x, y) dy (19)

напоминает форму полного дифференциала первого порядка функции двух переменных u (x, y)

.

Выясним условия, при которых возможно совпадение этих формул, т.е. выполнение равенства

Теорема 4 (о нахождении функции по полному дифференциалу). Если функции P (x, y), Q (x, y) определены и непрерывны в области D плоскости хоу и имеют в ней непрерывные частные производные , то выражение Pdx + Qdy является полным

дифференциалом некоторой функции u (х, у) тогда и только тогда, когда выполняется условие







Дата добавления: 2015-08-30; просмотров: 700. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия