Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство





· Достаточность. Пусть равенство (16) выполняется в области D. Докажем, что криволинейный интеграл (15) по любому замкнутому контуру L, лежащему в области D, равен нулю. Возьмём произвольный замкнутый контур L*, ограничивающий область D*, целиком лежащей внутри области D, и применим к нему формулу Грина

Так как по условию , то двойной интеграл равен рулю. Следовательно, равен нулю и криволинейный интеграл по контуру L*, что и требовалось доказать.

· Необходимость. Пусть интеграл

не зависит от пути интегрирования. Надо доказать, что выполняется равенство (16), что, в свою очередь, вызывает равенство нулю двойного интеграла (по теореме Грина)

(17)

Воспользуемся методом доказательства “от противного”. Предположим, что равенства (16) и (17) не выполняются, т.е. в области D, ограниченной контуром L, нашлась какая-то точка М, в которой

(18)


Рис. 9

Пусть для определённости эта разность положительна. Тогда, в силу непрерывности частных производных, эта разность знакопостоянна в некоторой окрестности точки М и сохраняет тот же знак, что и в самой точке. Обозначим эту окрестность D*, а ограничивающий её контур есть L* (см рис. 9). Составим двойной интеграл по области D* от разности (18). По свойству (cм. гл. 12) интеграл сохранит знак подынтегральной функции

По формуле Грина тогда и линейный интеграл (15) будет иметь этот же знак:

Но это обозначает, что криволинейный интеграл по замкнутому контуру отличен от нуля, т.е. зависит от пути интегрирования, что противоречит исходному условию. Отсюда следует, что наше предположение неверно. Теорема доказана.

Заметим, что дифференциальное выражение

P (x, y) dx + Q (x, y) dy (19)

напоминает форму полного дифференциала первого порядка функции двух переменных u (x, y)

.

Выясним условия, при которых возможно совпадение этих формул, т.е. выполнение равенства

Теорема 4 (о нахождении функции по полному дифференциалу). Если функции P (x, y), Q (x, y) определены и непрерывны в области D плоскости хоу и имеют в ней непрерывные частные производные , то выражение Pdx + Qdy является полным

дифференциалом некоторой функции u (х, у) тогда и только тогда, когда выполняется условие







Дата добавления: 2015-08-30; просмотров: 700. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия