Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство





· Достаточность. Пусть равенство (16) выполняется в области D. Докажем, что криволинейный интеграл (15) по любому замкнутому контуру L, лежащему в области D, равен нулю. Возьмём произвольный замкнутый контур L*, ограничивающий область D*, целиком лежащей внутри области D, и применим к нему формулу Грина

Так как по условию , то двойной интеграл равен рулю. Следовательно, равен нулю и криволинейный интеграл по контуру L*, что и требовалось доказать.

· Необходимость. Пусть интеграл

не зависит от пути интегрирования. Надо доказать, что выполняется равенство (16), что, в свою очередь, вызывает равенство нулю двойного интеграла (по теореме Грина)

(17)

Воспользуемся методом доказательства “от противного”. Предположим, что равенства (16) и (17) не выполняются, т.е. в области D, ограниченной контуром L, нашлась какая-то точка М, в которой

(18)


Рис. 9

Пусть для определённости эта разность положительна. Тогда, в силу непрерывности частных производных, эта разность знакопостоянна в некоторой окрестности точки М и сохраняет тот же знак, что и в самой точке. Обозначим эту окрестность D*, а ограничивающий её контур есть L* (см рис. 9). Составим двойной интеграл по области D* от разности (18). По свойству (cм. гл. 12) интеграл сохранит знак подынтегральной функции

По формуле Грина тогда и линейный интеграл (15) будет иметь этот же знак:

Но это обозначает, что криволинейный интеграл по замкнутому контуру отличен от нуля, т.е. зависит от пути интегрирования, что противоречит исходному условию. Отсюда следует, что наше предположение неверно. Теорема доказана.

Заметим, что дифференциальное выражение

P (x, y) dx + Q (x, y) dy (19)

напоминает форму полного дифференциала первого порядка функции двух переменных u (x, y)

.

Выясним условия, при которых возможно совпадение этих формул, т.е. выполнение равенства

Теорема 4 (о нахождении функции по полному дифференциалу). Если функции P (x, y), Q (x, y) определены и непрерывны в области D плоскости хоу и имеют в ней непрерывные частные производные , то выражение Pdx + Qdy является полным

дифференциалом некоторой функции u (х, у) тогда и только тогда, когда выполняется условие







Дата добавления: 2015-08-30; просмотров: 700. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия