Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. · Достаточность. Пусть интеграл





· Достаточность. Пусть интеграл

,

где L - любой замкнутый контур, принадлежащий области D.

Покажем, что этот интеграл не зависит от пути интегрирования. Действительно, пусть А и В - две точки области D. Соединим их двумя различными, произвольно выбранными кривыми АтВ и АпВ, лежащими в области D (рис. 8). Покажем, что

.


Рис. 8

Дуги АтВ и АпВ образуют замкнутый контур АтВnA. По свойствам (3 и 1) криволинейных интегралов

.

Следовательно,

, или ,

т. е. криволинейный интеграл не зависит о пути интегрирования.

· Необходимость. Пусть в области D криволинейный интеграл

не зависит от пути интегрирования. Покажем, что интеграл по любому замкнутому контуру, лежащему в этой области, равен нулю.

Действительно, рассмотрим произвольный замкнутый контур, лежащий в области D, и возьмём на нём две произвольные точки А и В (рис. 7.). Тогда

,

т.к. по условию

.

Итак, интеграл по любому замкнутому контуру L, лежащему в области D, равен нулю. Лемма доказана.

Докажем теперь основную теорему.

Теорема 3. Пусть функции Р (х, у) и Q (x, y) непрерывны вместе со своими частными производными первого порядка в области D, ограниченной одним замкнутым контуром. Тогда для того, чтобы криволинейный интеграл

(15)

не зависел от линии интегрирования, необходимо и достаточно, чтобы во всех точках области D выполнялось равенство

(16)







Дата добавления: 2015-08-30; просмотров: 642. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия