Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. · Достаточность. Пусть интеграл





· Достаточность. Пусть интеграл

,

где L - любой замкнутый контур, принадлежащий области D.

Покажем, что этот интеграл не зависит от пути интегрирования. Действительно, пусть А и В - две точки области D. Соединим их двумя различными, произвольно выбранными кривыми АтВ и АпВ, лежащими в области D (рис. 8). Покажем, что

.


Рис. 8

Дуги АтВ и АпВ образуют замкнутый контур АтВnA. По свойствам (3 и 1) криволинейных интегралов

.

Следовательно,

, или ,

т. е. криволинейный интеграл не зависит о пути интегрирования.

· Необходимость. Пусть в области D криволинейный интеграл

не зависит от пути интегрирования. Покажем, что интеграл по любому замкнутому контуру, лежащему в этой области, равен нулю.

Действительно, рассмотрим произвольный замкнутый контур, лежащий в области D, и возьмём на нём две произвольные точки А и В (рис. 7.). Тогда

,

т.к. по условию

.

Итак, интеграл по любому замкнутому контуру L, лежащему в области D, равен нулю. Лемма доказана.

Докажем теперь основную теорему.

Теорема 3. Пусть функции Р (х, у) и Q (x, y) непрерывны вместе со своими частными производными первого порядка в области D, ограниченной одним замкнутым контуром. Тогда для того, чтобы криволинейный интеграл

(15)

не зависел от линии интегрирования, необходимо и достаточно, чтобы во всех точках области D выполнялось равенство

(16)







Дата добавления: 2015-08-30; просмотров: 642. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Studopedia.info - Студопедия - 2014-2026 год . (0.013 сек.) русская версия | украинская версия