Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Доказательство. · Достаточность. Пусть интеграл





· Достаточность. Пусть интеграл

,

где L - любой замкнутый контур, принадлежащий области D.

Покажем, что этот интеграл не зависит от пути интегрирования. Действительно, пусть А и В - две точки области D. Соединим их двумя различными, произвольно выбранными кривыми АтВ и АпВ, лежащими в области D (рис. 8). Покажем, что

.


Рис. 8

Дуги АтВ и АпВ образуют замкнутый контур АтВnA. По свойствам (3 и 1) криволинейных интегралов

.

Следовательно,

, или ,

т. е. криволинейный интеграл не зависит о пути интегрирования.

· Необходимость. Пусть в области D криволинейный интеграл

не зависит от пути интегрирования. Покажем, что интеграл по любому замкнутому контуру, лежащему в этой области, равен нулю.

Действительно, рассмотрим произвольный замкнутый контур, лежащий в области D, и возьмём на нём две произвольные точки А и В (рис. 7.). Тогда

,

т.к. по условию

.

Итак, интеграл по любому замкнутому контуру L, лежащему в области D, равен нулю. Лемма доказана.

Докажем теперь основную теорему.

Теорема 3. Пусть функции Р (х, у) и Q (x, y) непрерывны вместе со своими частными производными первого порядка в области D, ограниченной одним замкнутым контуром. Тогда для того, чтобы криволинейный интеграл

(15)

не зависел от линии интегрирования, необходимо и достаточно, чтобы во всех точках области D выполнялось равенство

(16)







Дата добавления: 2015-08-30; просмотров: 642. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия