Править]Свойства
1. Линейность: ; 2. Аддитивность: ; 3. При изменении ориентации поверхности, поверхностный интеграл меняет знак.
20 Вычисление поверхностного интеграла Вычисление поверхностного интеграла второго рода. Пусть поверхность взаимно однозначно проецируется в область на плоскости Оху. В этом случае имеет одинаковый знак во всех точках поверхности. Именно, , если рассматривается верхняя сторона поверхности, и , если рассматривается нижняя сторона. Поэтому для верхней стороны все слагаемые в интегральной сумме должны браться со знаком "+", и сумма будет иметь вид . Если поверхность задана уравнением , , то эта сумма равна . В последней сумме легко увидеть интегральную сумму для двойного интеграла . Переход к пределу при (при этом и ) даст . Напомню, что эта формула получена для верхней стороны поверхности. Если выбрана нижняя сторона, то все слагаемые в интегральной сумме должны браться со знаком "-", и интегральная сумма будет иметь вид . Рассуждая, как и для верхней стороны, получим, что в этом случае . Окончательно, , где знак "+" берётся для верхней стороны поверхности, знак "-" - для нижней стороны. Аналогично изложенному, для других интегралов: , если поверхность однозначно проецируется в область на плоскости Oyz, при этом знак "+" берётся для "передней" стороны поверхности (где ), для "задней" стороны, где , берётся знак "-"; , если поверхность однозначно проецируется в область на плоскость Oхz, знак "+" берётся для "правой" стороны поверхности (где ), для "левой" стороны, где , берётся знак "-". Как и для поверхностного интеграла первого рода, если проецирование не взаимно однозначно, поверхность разбивается на части, которые проецируются однозначно. Примеры. 1. Вычислить , s - часть поверхности цилиндра y = , заключенная между плоскостями x=0, x=8, z=0, z=3. Сторона поверхности выбирается так, чтобы нормаль образовывала острый угол с осью Oх. Решение: Определяем знаки направляющих косинусов нормали cosa>0, cosb<0, cosg=0. Поэтому , где Dyz={(y,z): 0£ y £16, 0 £ z £ 3}, Dxz={(x,z): 0 £ x £ 8, 0 £ z £ 3} - проекции s на плоскости Oyz и Oxz соответственно. Проекция поверхности sна плоскость Oxy вырождается в линию - параболу y= , cosg=0, поэтому интеграл по Dxy в данном случае отсутствует. Вычислим отдельно интегралы по Dyz и Dxz, выражая x(y,z) и y(x,z) из уравнения поверхности s: x(y,z)=2 , y(x,z)= . = = dy=328, = = dx=928. Окончательно I = 328 - 928 = - 600. 2. Вычислить , где s - часть плоскости , ограниченная координатными плоскостями x=0, у=0, z=0. Сторона поверхности выбирается так, чтобы нормаль образовывала острый угол с осью Oz. Решение. Из двух направлений нормали к s мы должны выбрать такое, для которого коэффициент при орте (т.е. ) положителен, поэтому выбираем знак "-", тогда . В соответствии со знаками направляющих косинусов, . Вычисляем эти интегралы. . . . Окончательно, В заключение напомню, что вычисление поверхностного интеграла второго рода всегда можно свести к вычислению поверхностного интеграла первого рода. Так, в последнем примере подынтегральное выражение равно , где , . Поэтому , и, проектируя s на плоскость Оху , получим .
24 Однородные уравнения первого порядка.
26 Некоторые уравнения, допускающие понижение порядка
|