Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Криволинейные интегралы первого и второго рода, их свойства и вычисление.





Рассмотрим на плоскости или в пространстве кривую L и функцию f, определенную в каждой точке этой кривой. Разобьем кривую на части Δsi длиной Δsi и выберем на каждой из частей точку Mi. Составим интегральную сумму . Назовем λ длину наибольшего отрезка кривой.

Определение 10.1. Если существует конечный предел интегральной суммы , не зависящий ни от способа разбиения кривой на отрезки, ни от выбора точек Mi, то он называется криволинейным интегралом первого рода от функции f по кривой L и обозначается

. (10.1)

 

Например, если функция f(M) задает плотность в точке М, то интеграл (10.1) равен массе рассматриваемой кривой.

 

Свойства криволинейного интеграла 1-го рода.

 

1. Если функция f непрерывна на кривой L, то интеграл существует.

2. Криволинейный интеграл 1-го рода не зависит от направления движения по кривой, то есть от того, какую из точек, ограничивающих кривую, считать начальной, а какую – конечной. Если назвать эти точки А и В, то

(10.2)

Справедливость этих свойств следует из определения криволинейного интеграла 1-го рода.

 

Способ вычисления криволинейного интеграла 1-го рода.

 

Выберем на кривой L направление от начальной точки А и отметим, что положение точки М на кривой определяется длиной дуги АМ = s. Тогда кривую L можно задать параметрически: x = x(s), y = y(s), z = z(s), где Функция f(x,y,z) становится при этом сложной функцией одной переменной s: f(x(s), y(s), z(s)). Тогда интегральная сумма

,

где - координата точки Mi, является обычной интегральной суммой для определен-ного интеграла Следовательно,

= (10.3)

Если же кривая L задана в параметрической форме:

x = φ(t), y = ψ(t), z = χ(t), t0 ≤ t ≤ T,

то, применяя в интеграле (10.3) формулу замены переменной и учитывая, что дифференциал дуги

получим:

(10.4)

Таким образом, вычисление криволинейного интеграла 1-го рода сводится к вычислению обычного определенного интеграла от функции переменной t в пределах, соответствующих изменению значения этой переменной на рассматриваемой кривой.

 

Пример.

Вычислить где L: Применяя формулу (10.4), получим:

 

Криволинейный интеграл второго рода.

 

Вновь рассмотрим кривую L, в каждой точке которой задана функция f(M), и зададим разбиение кривой на отрезки. Выберем на каждом отрезке точку Mi и умножим значе-ние функции в этой точке не на длину i-го отрезка, как в случае криволинейного инте-грала 1-го рода, а на проекцию этого отрезка, скажем, на ось Ох, то есть на разность xi – xi-1 = Δxi. Составим из полученных произведений интегральную сумму .

Определение 10.2. Если существует конечный предел при интегральной суммы , не зависящий от способа разбиения кривой на отрезки и выбора точек Mi, то от называется криволинейным интегралом второго рода от функции f(M) по кривой L и обозначается

. (10.5)

Подобным образом можно определить и криволинейные интегралы 2-го рода вида

Определение 10.3. Если вдоль кривой L определены функции P(M) = P(x, y, z),

Q(M) = Q(x, y, z), R(M) = R(x, y, z) и существуют интегралы

,

то и их сумму называют криволинейным интегралом второго рода (общего вида) и полагают

. (10.6)

 

Замечание. Если считать, что сила действует на точку, движущуюся по кривой (АВ), то работа этой силы может быть представлена как

,

то есть криволинейным интегралом 2-го рода.

 

Свойства криволинейного интеграла 2-го рода.

 

1. Если функции P(M), Q(M), R(M) непрерывны на кривой (АВ), то интеграл (10.6) существует (справедливость этого утверждения следует из определения 10.2).

 

1. При изменении направления кривой (то есть перемены местами начальной и конечной ее точек) криволинейный интеграл 2-го рода меняет знак:

(10.7)

Действительно, при этом изменяется знак Δxi в интегральной сумме.

 

Способ вычисления криволинейного интеграла 2-го рода.

 

Теорема 10.1. Пусть кривая L задана параметрическими уравнениями

x = φ(t), y = ψ(t), z = χ(t), α ≤ t ≤ β,

где φ, ψ, χ – непрерывно дифференцируемые функции, и на ней задана непрерывная функция f(x, y, z). Тогда интеграл (10.5) существует и имеет место равенство

. (10.8)

Доказательство.

Запишем Δxi = xi – xi-1 = φ(ti) – φ(ti-1) и преобразуем последнюю разность по формуле Лагранжа: φ(ti) – φ(ti-1) = φ΄(τi)Δti, где τi – некоторое значение t, заключенное между ti-1 и ti. Выберем точку Мi так, чтобы ее координаты соответствовали значению параметра, равному τi: Mi(φ(τi), ψ(τi), χ(τi)). Подставив эти значения в формулу (10.5), получим:

.

Справа получен предел интегральной суммы для функции f(φ(t),ψ(t),χ(t))φ΄(t) на отрезке [α, β], равный определенному интегралу от этой функции:

,

что и требовалось доказать.

 

Следствие. Аналогичные соотношения можно получить для криволинейных интегра-лов вида , откуда следует, что

(10.9)

 

Пример.

Вычислим интеграл , где L – отрезок прямой от точки А(1,2,-2) до точки В(0, -1, 0). Запишем уравнение этой прямой в параметрическом виде:

Следовательно, φ΄(t) = -1, ψ΄(t) = -3, χ΄(t) = 2. Тогда

 

15 Вычисление криволинейного интеграла.


Пусть гладкая дуга AB задана параметрически уравнениями: x=x(t), y=y(t), z=z(t), где α ≤ t ≤ β Кроме того, на этой дуге определены и непрерывны функции f(x,y,z), P(x,y,z), Q(x,y,z), R(x,y,z), тогда криволинейные интегралы могут быть вычислены следующим образом:

а) криволинейный интеграл 1-го рода:

б) криволинейный интеграл 2-го рода:

Пример 3.1. Найти массу четверти окружности x2+y2=R2, х≥0, у≥0, если плотность в каждой точке окружности равна ординате этой точки.







Дата добавления: 2015-08-30; просмотров: 1068. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия