Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Выполнение.





В начале работы создадим файл с данными как показано на рис. 2.4.1.

 

 

Рис. 2.4.1. Фрагмент файла данных

 

В пакете SPSS для корреляционного анализа есть раздел «Корреляция в меню. Анализ».

Для более наглядного представления имеющихся данных построим график зависимости «Затраты на рекламу – объем продаж» в виде диаграммы рассеяния.

· Выберем в меню Graphs (Визуализация) Scatter–Dot (Разброс/точка), откроется диалоговое окно Scatter–Dot (Разброс/точка) (рис. 2.4.2).

 

 

Рис. 2.4.2. Диалоговое окно Scatter–Dot (Разброс/точка)

 

· В диалоговом окне Scatter–Dot (Разброс/точка) щёлкнем на области Simple Scatter (Простой разброс).

· Щелчком по выключателю Define (Определить) откроем соответствующее диалоговое окно (рис. 2.4.3).

· Отобразим объем продаж в зависимости от затрат на рекламу, поэтому переменную объемы_продаж из списка исходных переменных перенесем в поле оси Y, а переменную затраты_на_рекламу – в поле оси X. И начнем построение диаграммы щелчком на ОК.

Результатом выполнения вышеуказанных команд будет следующий график (рис. 2.4.4).

 

 

Рис. 2.4.3. Вид окна Simple Scatterplot (Простой график рассеяния).

 

 

Рис. 2.4.4. Простой график рассеивания

 

Теперь определим основные корреляционные показатели.

Для этого в меню Анализ выбираем Корреляция – Двумерный.

Далее появится диалоговое окно (рис. 2.4.5).

 

 

Рис. 2.4.5. Диалоговое окно «Двумерная корреляция»

 

Далее получаем следующий вывод (рис.2.4.6).

Регрессионный анализ служит для определения вида связи между переменными и дает возможность для прогнозирования значения одной (зависимой) переменной отталкиваясь от значения другой (независимой) переменной.

В пакете SPSS для этой цели имеется раздел Regression (Регрессия) (меню Analyze (Анализ)), который предоставляет пользователю широкий набор процедур регрессионного анализа.

Каждая процедура имеет модель регрессии, которая соотносит зависимую переменную с независимой переменной (или множеством независимых переменных).

Простая линейная регрессия лучше всего подходит для того, чтобы продемонстрировать основополагающие принципы регрессионного анализа.

По виду получившейся диаграммы рассеяния можно предположить о наличии линейной зависимости между исследуемыми показателями.

Описательные статистики

  Среднее Стд. отклонение N
затраты_на_рекламу 24,7000 11,37297  
объем_продаж 450,6000 32,63332  

Корреляции(a)

    затраты_на_рекламу объем_продаж
затраты_на_рекламу Корреляция Пирсона   ,983(**)
  Знч.(1–сторон)   ,000
объем_продаж Корреляция Пирсона ,983(**)  
  Знч.(1–сторон) ,000  

** Корреляция значима на уровне 0.01 (1–сторон.).

a Искл. целиком N=10

 

Корреляции(a)

 

    затраты_на_рекламу объем_ продаж
тау–b Кендалла затраты_на_рекламу Коэффициент корреляции 1,000 ,956(**)
    Знч. (1–сторон) . ,000
  объем_продаж Коэффициент корреляции ,956(**) 1,000
    Знч. (1–сторон) ,000 .
ро Спирмена затраты_на_рекламу Коэффициент корреляции 1,000 ,988(**)
    Знч. (1–сторон) . ,000
  объем_продаж Коэффициент корреляции ,988(**) 1,000
    Знч. (1–сторон) ,000 .

** Корреляция значима на уровне 0.01 (1–сторонняя).

a Искл. целиком N = 10

 

Рис. 2.4.6. Вывод корреляций

 

Перейдем к построению регрессионной зависимости между показателями.

· Выберем в меню Analyze (Анализ) Regression (Регрессия) Linear (Линейная). Появится диалоговое окно Linear Regression (Линейная регрессия) (рис. 2.4.7).

 

 

Рис. 2.4.7. Вид диалогового окна Linear Regression (Линейная регрессия)

 

· Перенесем переменную объемы_продаж в поле для зависимых переменных и присвоим переменной затраты_на_рекламу статус независимой переменной.

· Ничего больше не меняя, начните расчёт нажатием ОК.

Вывод основных результатов выглядит следующим образом (рис. 2.4.8).

Во второй таблице дается заключение о соответствии модели исходным данным, а именно приводится коэффициент детерминации, который характеризует качество получившейся модели.

В третьей таблице приведены величины, которые отражают два источника дисперсии: дисперсию, которая описывается уравнением регрессии (сумма квадратов, обусловленная регрессией) и дисперсию, которая не учитывается при записи уравнения (остаточная сумма квадратов). Также приведено значение F –критерия Фишера.

В последней таблице выводятся коэффициент регрессии b и смещение по оси ординат а под именем «константа».

То есть, уравнение регрессии выглядит следующим образом:

,

где показатель «Объемы продаж», показатель «Затраты на рекламу».

 

Включенные/исключенные переменные(b)

 

Модель Включенные переменные Исключенные переменные Метод
  затраты_на_рекламу(a) . Принудительное включение

a Включены все запрошенные переменные

b Зависимая переменная: объем_продаж

 

Сводка для модели

 

Модель R R квадрат Скорректированный R квадрат Стд. ошибка оценки
    ,983(a) ,966 ,962 6,39137
           

a Предикторы: (константа) затраты_на_рекламу

 

Дисперсионный анализ (b)

 

Модель   Сумма квадратов ст.св. Средний квадрат F Знч.  
  Регрессия 9257,603   9257,603 226,627 ,000(a)
  Остаток 326,797   40,850    
  Итого 9584,400        
                         

a Предикторы: (константа) затраты_на_рекламу

b Зависимая переменная: объем_продаж

 

 

Коэффициенты(a)

 

Модель Нестандартизованные коэффициенты Станд. коэфф. t Знч.
  B Стд. ошибка Бета    
  (Константа) 380,945 5,049   75,448 ,000
  затраты_на_рекламу 2,820 ,187 ,983 15,054 ,000
               

a Зависимая переменная: объем_продаж

 

Рис. 2.4.8. Результат выполнения процедуры AnalyzeRegressionLinear

 







Дата добавления: 2015-08-30; просмотров: 632. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия