Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

При которой удельная энергия сечения имеет минимум называется критической.





Все элементы потока при глубине равной критической обозначаются с индексом «к». Таким образом в соответствии с уравнением (2.7):

 


(2.8)



Из рассмотрения рис. 2.8 видно, что второй асимптотой кривой Э0 =f(h) будет прямая Э0 = h. Точка кривой, соответствующая ее минимуму, делит кривую на две ветви: нижняя отвечает такому состоянию потока, при котором с увеличением глубины происходит уменьшение удельной энергии сечения; верхняя – соответствует такому состоянию потока, при котором с увеличением глубины происходит увеличение удельной энергии сечения. Очевидно, что одним и тем же запасом энергии поток обладает при двух значениях глубин. График на рис 2.8 позволяет определить величину критической глубины hk, как глубины, соответствующей минимуму удельной энергии сечения.
Критическую глубину можно определить используя зависимость (2.8). Для этого необходимо задаться рядом значений h и подсчитав w, В и w3/В построим кривую w3/В = f(h), так как при Э0 min отношение ,то отложив по оси абсцисс величину , получаем кривую . Так как при Э0 min отношение
справедливо, то отложив по оси абсцисс величину , получаем на оси ординат hk (см. рис 2.9). Уравнение (2.8) не содержит ни уклона русла, ни его шероховатости, Следовательно критическая глубина определяется только расходом русла и его формой. Для определения критической глубины можно пользоваться графиком А.Н.Рахманова.

При определении hk прямоугольных, треугольных, параболических русел графики не нужны, так как аналитическое определение критической глу

бины осуществляется достаточно просто

 

1. Прямоугльное русло: вводя в рассмотрение

удельный расход, преобразуем уравнение (2.8)

следующим образом:

 

(2.9)

При a = 1,1 получим: hk = 0,482 q2/3;

При a = 1,0 получим hr = 0,467 q2/3;

Так как для прямоугольного русла q = Vk hk, то из формулы (2.9) следует:

а отсюда следует:

(2.10)

Для параболическогорусла при a = 1,0 (2.11)

 

при a = 1,1 (2,12)

Для треугольного русла: при a=1,1 (2.13)

Для трапецеидальных русел критическую глубину можно определить, используя метод Агроскина: сначала вычисляем критическую глубину для условного прямоугольного русла:

где Q – расход русла; b – ширина по дну данного русла. Затем находим значение величины (2.14)

где m – коэффициент откоса данного русла.

Далее, пользуясь приближенной формулой (2.16) или таблицей находим особое значение функции f(sп), после чего вычисляем искомую критическую глубину данного трапецеидального русла:

(2.15)

где:

 

 

(2.16)







Дата добавления: 2015-08-30; просмотров: 603. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия