Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. - М., 1980. 1 страница





При несоблюдении указанных требований работа не рецензируется.

Прорецензированные и зачтенные контрольные работы вместе со всеми исправлениями и дополнениями, сделанными по требованию рецензента, следует сохранять. Без предъявления зачтенных контрольных работ студент не допускается к сдаче зачета и экзамена.

 

3.2. Выбор варианта контрольной работы

 

Номер варианта для каждой задачи выбирается по двум последним цифрам номера зачетной книжки. Если это число превышает 30, то из него вычитается число, кратное 30, так, чтобы остаток оказался меньше 30. Этот остаток есть номер варианта. Например, номер зачетной книжки оканчивается на 76. Тогда номер варианта задания равен

 

76-2*30=16.

 

Примечание. Количество и содержание заданий контрольных работ, выполняемых в каждом семестре, определяется студентам на установочной сессии.

 

3.3. Задания контрольных работ

 

К о н т р о л ь н а я р а б о т а № 1

 

Линейная алгебра и аналитическая геометрия

 

Задание 1.1

 

Проверить совместность системы уравнений и в случае совместности решить ее:

а) по формулам Крамера;

б) с помощью обратной матрицы (матричным методом);

в) методом Гаусса.

 

1. 2.
    3.     4.
    5.     6.
    7.     8.
    9.     10.

 

11. 12.
    13.     14.
    15.     16.
    17.     18.
    19.     20.
    21.     22.
    23.     24.

 

25. 26.
    27.     28.
    29.     30.

 

Задание 1.2

 

Решить однородную систему линейных алгебраических уравнений.

 

1. 2.
    3.     4.
    5.     6.
    7.     8.

 

9. 10.
    11.     12.
    13.     14.
    15.     16.
    17.     18.
    19.     20.
    21.     22.

 

23. 24.
    25.     26.
    27.     28.
    29.     30.

 

Задание 1.3

 

По координатам точек a, b и с для указанных векторов найти:

а) модуль вектора а;

б) скалярное произведение векторов a и b;

в) проекцию вектора c на вектор d;

г) координаты точки M, делящей отрезок l в отношении .

1. A (4, 6, 3), B (-5, 2, 6), C (4, -4, -3), a = - , b = , c = , d = , l = AB, = 5, = 4.

 

2. A (4, 3, -2), B (-3, -1, 4), C (2, 2, 1), a = , b = , c = , d = , l = BC, = 2, = 3.

 

3. A (-2, -2, 4), B (1, 3, -2), C (1, 4, 2), a = , b = , c = , d = , l = BA, =2, =1.

4. A (2, 4, 3), B (3, 1, -4), C (-1, 2, 2), a = + , b = , c = b, d = , l = BA, = 1, = 4.

 

5. A (2, 4, 5), B (1, -2, 3), C (-1, -2, 4), a = , b = , c = b, d = , l = AB, = 2, = 3.

 

6. A (-1, -2, 4), B (-1, 3, 5), C (1, 4, 2), a = , c = b = , d = , l = AC, = 1, = 7.

 

7. A (1, 3, 2), B (2, 4, 1), C (1, 3, 2), a = + , B = ,с = b, d = , l = AB, = 2, = 4.

 

8. A (2, -4, 3), B (-3, -2, 4), C (0, 0, -2), a = - , b = c = , d = , l = AC, = 2, = 1.

 

9. A (3, 4, -4), B (-2, 1, 2), C (2, -3, 1), a = - , b = c = , d = , l = AB, = 2, = 5.

 

10. A (0, 2, 5), B (2, -3, 4), C (3, 2, -5), a = + , b = c = , d = , l = AC, = 3, = 2.

 

11. A (-2,-3, -4), B (2, -4, 0), C (1, 4, 5), a = - , b = c = , d= , l =AB, = 4, = 2.

 

12. A (-2, -3, -2), B (1, 4, 2), C (1, -3, 3), a = - , b = c= , d = , l = BC, = 3, = 1.

 

13. A (5, 6, 1), B (-2, 4,-1), C (3,-3,3), a = - , b = c = , d = , l = BC, = 3, = 2.

 

14. A (10, 6, 3), B (-2, 4, 5), C (3, -4, -6), a = - , b = c= , d = , l = AC, = 2, = 4.

15. A (3, 2, 4), B (-2, 1, 3), C (2, -2, -1), a = - , b = , c = , d = , l = AB, = 2, = 5.

 

16. A (-2, 3, -4), B (3, -1, 2), C (4, 2, 4), a = + , b = c = , d = , l = BC, = 2, = 5.

 

17. A (4, 5, 3), B (-4, 2, 3), C (5, -6, -2), a = - , b = c= , d = , l = BC, = 5, = 1.

 

18. A (2, 4, 6), B (-3, 5, 1), C (4, -5, -4), a = + , b = c = , d = , l = BC, = 1, = 3.

 

19. A (-4, -2, -5), B (3, 7, 2), C (4, 6, -3), a = + , b = c = , d = , l = BA, = 4, = 3.

 

20. A (5, 4, 4), B (-5, 2, 3), C (4, 2, -5), a = - , b = , c = , d = , l = BC, = 3, = 1.

 

21. A (3, 4, 6), B (-4, 6, 4), C (5, -2, -3), a = + , b = , c = , d = , l = BA, = 5, = 3.

 

22. A (-5, -2, -6), B (3, 4, 5), C (2, -5, 4), a = - , b = c = , d = , l = AC, = 3, = 4.

 

23. A (3, 4, 1), B (5, -2, 6), C (4, 2, -7), a = + , b = c = , d = , l = AB, = 2, = 3.

24. A (4, 3, 2), B (-4, -3, 5), C (6, 4, -3), a = - , b = c = , d = , l = BC, = 2, = 5.

 

25. A (-5, 4, 3), B (4, 5, 2), C (2, 7, -4), a = + , b = c = , d = , l = BC, = 3, = 4.

26. A (6, 4, 5), B (-7, 1, 8), C (2, -2, -7), a = - , b = , c = , d = , l = AB, = 3, = 2.

 

27. A (6, 5, -4), B (-5, -2, 2), C (3, -3, 2), a = - , b = c = , d = , l = BC, = 1, = 5.

 

28. A (-3, -5, 6), B (3, 5, -4), C (2, 6, 4), a = - , b = , c = , d = , l = BA, = 4, = 2.

 

29. A (3, 5, 4), B (4, 2, -3), C (-2, 4, 7), a = - , b = ,c = d = , l = BA, = 2, = 5.

 

30. A (4, 6, 7), B (2, -4, 1), C (-3, -4, 2), a = - , b = c = , d = , l = AB, = 3, = 4.

 

Задание 1.4

 

Даны векторы . Необходимо: а) найти модуль векторного произведения векторов и ; б) проверить, будут ли коллинеарны или ортогональны два вектора и ; в) вычислить смешанное произведение трех векторов и проверить, будут ли они компланарны.







Дата добавления: 2015-09-19; просмотров: 504. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Studopedia.info - Студопедия - 2014-2026 год . (0.011 сек.) русская версия | украинская версия