Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Бугров Я.С., Никольский С.М. Элементы линейной алгебры и аналитической геометрии. - М., 1980. 1 страница





При несоблюдении указанных требований работа не рецензируется.

Прорецензированные и зачтенные контрольные работы вместе со всеми исправлениями и дополнениями, сделанными по требованию рецензента, следует сохранять. Без предъявления зачтенных контрольных работ студент не допускается к сдаче зачета и экзамена.

 

3.2. Выбор варианта контрольной работы

 

Номер варианта для каждой задачи выбирается по двум последним цифрам номера зачетной книжки. Если это число превышает 30, то из него вычитается число, кратное 30, так, чтобы остаток оказался меньше 30. Этот остаток есть номер варианта. Например, номер зачетной книжки оканчивается на 76. Тогда номер варианта задания равен

 

76-2*30=16.

 

Примечание. Количество и содержание заданий контрольных работ, выполняемых в каждом семестре, определяется студентам на установочной сессии.

 

3.3. Задания контрольных работ

 

К о н т р о л ь н а я р а б о т а № 1

 

Линейная алгебра и аналитическая геометрия

 

Задание 1.1

 

Проверить совместность системы уравнений и в случае совместности решить ее:

а) по формулам Крамера;

б) с помощью обратной матрицы (матричным методом);

в) методом Гаусса.

 

1. 2.
    3.     4.
    5.     6.
    7.     8.
    9.     10.

 

11. 12.
    13.     14.
    15.     16.
    17.     18.
    19.     20.
    21.     22.
    23.     24.

 

25. 26.
    27.     28.
    29.     30.

 

Задание 1.2

 

Решить однородную систему линейных алгебраических уравнений.

 

1. 2.
    3.     4.
    5.     6.
    7.     8.

 

9. 10.
    11.     12.
    13.     14.
    15.     16.
    17.     18.
    19.     20.
    21.     22.

 

23. 24.
    25.     26.
    27.     28.
    29.     30.

 

Задание 1.3

 

По координатам точек a, b и с для указанных векторов найти:

а) модуль вектора а;

б) скалярное произведение векторов a и b;

в) проекцию вектора c на вектор d;

г) координаты точки M, делящей отрезок l в отношении .

1. A (4, 6, 3), B (-5, 2, 6), C (4, -4, -3), a = - , b = , c = , d = , l = AB, = 5, = 4.

 

2. A (4, 3, -2), B (-3, -1, 4), C (2, 2, 1), a = , b = , c = , d = , l = BC, = 2, = 3.

 

3. A (-2, -2, 4), B (1, 3, -2), C (1, 4, 2), a = , b = , c = , d = , l = BA, =2, =1.

4. A (2, 4, 3), B (3, 1, -4), C (-1, 2, 2), a = + , b = , c = b, d = , l = BA, = 1, = 4.

 

5. A (2, 4, 5), B (1, -2, 3), C (-1, -2, 4), a = , b = , c = b, d = , l = AB, = 2, = 3.

 

6. A (-1, -2, 4), B (-1, 3, 5), C (1, 4, 2), a = , c = b = , d = , l = AC, = 1, = 7.

 

7. A (1, 3, 2), B (2, 4, 1), C (1, 3, 2), a = + , B = ,с = b, d = , l = AB, = 2, = 4.

 

8. A (2, -4, 3), B (-3, -2, 4), C (0, 0, -2), a = - , b = c = , d = , l = AC, = 2, = 1.

 

9. A (3, 4, -4), B (-2, 1, 2), C (2, -3, 1), a = - , b = c = , d = , l = AB, = 2, = 5.

 

10. A (0, 2, 5), B (2, -3, 4), C (3, 2, -5), a = + , b = c = , d = , l = AC, = 3, = 2.

 

11. A (-2,-3, -4), B (2, -4, 0), C (1, 4, 5), a = - , b = c = , d= , l =AB, = 4, = 2.

 

12. A (-2, -3, -2), B (1, 4, 2), C (1, -3, 3), a = - , b = c= , d = , l = BC, = 3, = 1.

 

13. A (5, 6, 1), B (-2, 4,-1), C (3,-3,3), a = - , b = c = , d = , l = BC, = 3, = 2.

 

14. A (10, 6, 3), B (-2, 4, 5), C (3, -4, -6), a = - , b = c= , d = , l = AC, = 2, = 4.

15. A (3, 2, 4), B (-2, 1, 3), C (2, -2, -1), a = - , b = , c = , d = , l = AB, = 2, = 5.

 

16. A (-2, 3, -4), B (3, -1, 2), C (4, 2, 4), a = + , b = c = , d = , l = BC, = 2, = 5.

 

17. A (4, 5, 3), B (-4, 2, 3), C (5, -6, -2), a = - , b = c= , d = , l = BC, = 5, = 1.

 

18. A (2, 4, 6), B (-3, 5, 1), C (4, -5, -4), a = + , b = c = , d = , l = BC, = 1, = 3.

 

19. A (-4, -2, -5), B (3, 7, 2), C (4, 6, -3), a = + , b = c = , d = , l = BA, = 4, = 3.

 

20. A (5, 4, 4), B (-5, 2, 3), C (4, 2, -5), a = - , b = , c = , d = , l = BC, = 3, = 1.

 

21. A (3, 4, 6), B (-4, 6, 4), C (5, -2, -3), a = + , b = , c = , d = , l = BA, = 5, = 3.

 

22. A (-5, -2, -6), B (3, 4, 5), C (2, -5, 4), a = - , b = c = , d = , l = AC, = 3, = 4.

 

23. A (3, 4, 1), B (5, -2, 6), C (4, 2, -7), a = + , b = c = , d = , l = AB, = 2, = 3.

24. A (4, 3, 2), B (-4, -3, 5), C (6, 4, -3), a = - , b = c = , d = , l = BC, = 2, = 5.

 

25. A (-5, 4, 3), B (4, 5, 2), C (2, 7, -4), a = + , b = c = , d = , l = BC, = 3, = 4.

26. A (6, 4, 5), B (-7, 1, 8), C (2, -2, -7), a = - , b = , c = , d = , l = AB, = 3, = 2.

 

27. A (6, 5, -4), B (-5, -2, 2), C (3, -3, 2), a = - , b = c = , d = , l = BC, = 1, = 5.

 

28. A (-3, -5, 6), B (3, 5, -4), C (2, 6, 4), a = - , b = , c = , d = , l = BA, = 4, = 2.

 

29. A (3, 5, 4), B (4, 2, -3), C (-2, 4, 7), a = - , b = ,c = d = , l = BA, = 2, = 5.

 

30. A (4, 6, 7), B (2, -4, 1), C (-3, -4, 2), a = - , b = c = , d = , l = AB, = 3, = 4.

 

Задание 1.4

 

Даны векторы . Необходимо: а) найти модуль векторного произведения векторов и ; б) проверить, будут ли коллинеарны или ортогональны два вектора и ; в) вычислить смешанное произведение трех векторов и проверить, будут ли они компланарны.







Дата добавления: 2015-09-19; просмотров: 504. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Тема 2: Анатомо-топографическое строение полостей зубов верхней и нижней челюстей. Полость зуба — это сложная система разветвлений, имеющая разнообразную конфигурацию...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Studopedia.info - Студопедия - 2014-2025 год . (0.015 сек.) русская версия | украинская версия