Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Решение Крамеровских систем уравнений. Метод Гаусса для решения произвольных систем алгебраических уравнений.





3. Линейное пространство. Базис, размерность. Линейные операторы. Пространства R1, R2, R3. Преобразование матрицы линейного оператора при переходе к новому базису.

4. Скалярное, векторное и смешанное произведение в R3. Евклидово пространство. Ортогональный базис. Угол между двумя векторами.

Метод координат. Расстояние между точками в пространстве. Уравнение линии на плоскости. Прямая и плоскость в пространстве. Расстояние от точки до прямой и плоскости.

 

Тема 2. Введение в математический анализ

 

Логическая символика. Основные числовые множества. Элементарные функции, их свойства и графики.

Предел функции и его свойства. Непрерывность функции в точке и классификация точек разрыва. Непрерывность основных элементарных функций.

Техника вычисления пределов. Бесконечно большие и малые функции. Сравнение бесконечно малых.

Глобальные свойства непрерывных функций. Приближенное решение уравнений (методом половинного деления).

Производная функции, ее механический и геометрический смысл. Связь непрерывности и дифференцируемости функции.

Основные правила дифференцирования. Теоремы о производной сложной и обратной функции.

Понятие о производных высших порядков. Дифференциал и его геометрический смысл.

 

Тема 3. Применение дифференциального исчисления для

исследования функций и построения графиков

 

Экстремумы функций. Основные теоремы о дифференцируемых функциях (Ферма, Ролля, Лагранжа). Оценка погрешности вычислений.

Формула Тейлора. Правило Лопиталя. Примеры.

Условия монотонности функции. Признаки точек экстремума и перегиба. Выпуклость функции и ее достаточное условие.

Асимптоты функции и общая схема исследования функции и построения графиков.

Тема 4. Функции нескольких переменных

Понятие функции нескольких переменных. Частные производные. Дифференцируемость функций нескольких переменных. Полный дифференциал.

Частные производные высших порядков. Формула Тейлора.

Экстремум функций нескольких переменных. Необходимое и достаточное условия экстремума. Обзор методов определения локальных и глобальных экстремумов функций нескольких переменных.

Эмпирические формулы. Выбор параметров эмпирических формул методом наименьших квадратов.

 

Тема 5. Неопределенный интеграл

 

21. Первообразная и неопределенный интеграл. Простейшие приемы интегрирования: интегрирование заменой переменной и по частям.

Интегрирование рациональных функций и функций, допускающих рационализацию.

Тема 6. Определенный интеграл

 

Задачи, приводящие к понятию определенного интеграла. Определенный интеграл и его свойства. Формула Ньютона-Лейбница. Приемы вычисления определенного интеграла.

Теорема существования определенного интеграла. Понятие о численных методах нахождения определенных интегралов.

Приложения определенного интеграла в геометрии и механике.

Несобственные интегралы первого и второго рода. Понятие о двойном интеграле.

 

Тема 7. Ряды

 

Числовые ряды. Сходимость и сумма ряда. Простейшие свойства числовых рядов. Необходимый признак сходимости.

28. Достаточные признаки сходимости: сравнения, Даламбера, Коши, интегральный. Примеры.

Знакопеременные ряды. Абсолютная и условная сходимость. Признак Лейбница.

Степенные ряды. Область сходимости. Теорема Абеля. Нахождение радиуса сходимости степенного ряда. Свойства степенных рядов (обзор).

Ряды Тейлора и Маклорена. Разложение в степенной ряд основных элементарных функций.

Применение рядов к приближенным вычислениям.

 

Тема 8. Обыкновенные дифференциальные уравнения (ОДУ)

 

Задачи, приводящие к ОДУ. Порядок ОДУ, общее и частное решение. Теорема существования и единственности решения задачи Коши.

Основные ОДУ, интегрируемые в квадратурах (в полных дифференциалах, однородные, линейные первого порядка).

Линейные ОДУ второго порядка. Линейно зависимые и независимые решения. Теорема о структуре общего решения.

36. Решение линейных ОДУ высших порядков с постоянными коэффициентами: со специальной правой частью и методом вариации произвольных постоянных.







Дата добавления: 2015-09-19; просмотров: 386. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия