Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Измерение количества информации по Р.Хартли.





Меру количества информации установил в 1928 году Р.Хартли на основе предложенной им концепции выбора. Согласно этой концепции связь между отправителем и получателем информации осуществляется только при наличии определенного набора сообщений, из которых отправитель в каждый момент времени выбирает только одно. В результате последовательных выборов вниманию получателя предлагается последовательность сообщений (символов). Во время каждого выбора исключаются все другие сообщения (символы), которые могли бы быть выбраны.

Пусть сообщение состоит из элементов, которые последовательно и независимо выбирают из равновероятных элементов. Число возможных сообщений в этом случае (по теореме 1):

(1.3)

Хартли установил, что в роли меры количества информации, которая имела бы практическую ценность, лучше выбрать не число , а логарифм этого числа:

(1.4)

Мера количества информации, введенная Хартли, целиком согласуется с природными интуитивными требованиями к такой мере. Прежде всего, интуитивно ощущается, что количество информации в сообщении будет тем больше, чем длиннее сообщение: например, более длинная телеграмма содержит и больше сведений. Кроме этого, характеристика какого-нибудь явления будет тем лучше, чем большую разновидность сообщений о нем можно использовать. Например, оценка студента по 100-бальной системе лучше отражает его знания, чем пятибальная.

Формула (1.3) отображает и зависимость количества информации от длины сообщения и от разнообразия элементов в сообщении . Следует отметить: для вывода формулы (1.4) Хартли сделал предположение, что элементы сообщения равновероятны и выбор каждого элемента осуществляется независимо от того, какие элементы были раньше выбраны. В информметрии идеи Хартли интерпретируются с более общей позиции, которая вытекает из понятия системы.

Пусть есть система из равновероятных (равновозможных) состояний. Если каждое состояние системы закодировать равномерным кодом определенной длины над алфавитом , то длину нужно выбрать так, чтобы число всех разных комбинаций было меньше чем . Наибольшее число, при котором это возможно, или мера разнообразия множества состояний системы задается формулой Р.Хартли: (1.5)

где - коэффициент пропорциональности (масштабирования, зависимо от выбранной длины измерения), - основа системы меры, - количество информации, которую дает появление одного из равновозможных состояний системы.

Поскольку в информационных процессах наиболее широко используется двоичная система счисления, то из практических соображений выбирают . Формулу Хартли рассматривают в виде:

(1.6)

где - количество равновозможных состояний системы, - количество информации в битах. Отметим, что бит в данном случае имеет другое толкование, чем при техническом (алфавитном) подходе при оценивании информации. Бит – это количество информации, которая поступает от системы, что имеет два разных, одинаково возможных для реализации состояний.

.

Следовательно, тут бит не является наименьшей единицей измерения информации.

 

 
 







Дата добавления: 2015-09-15; просмотров: 387. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Педагогическая структура процесса социализации Характеризуя социализацию как педагогический процессе, следует рассмотреть ее основные компоненты: цель, содержание, средства, функции субъекта и объекта...

Типовые ситуационные задачи. Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической   Задача 1. Больной К., 38 лет, шахтер по профессии, во время планового медицинского осмотра предъявил жалобы на появление одышки при значительной физической нагрузке. Из медицинской книжки установлено, что он страдает врожденным пороком сердца....

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Искусство подбора персонала. Как оценить человека за час Искусство подбора персонала. Как оценить человека за час...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия