Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Формула Шеннона (мера Шеннона).





Базируясь на вероятностном подходе к оцениванию информации, К.Шеннон в 1948 году вывел формулу, которая дает оценку информации, абстрагируясь от ее содержания:

(1.9)

где - число состояний системы, - вероятность, или относительная частота перехода системы в -ое состояние, - количество информации в битах, которую дает, в среднем, появление одного из разновероятных состояний системы. Таким образом,

.

Формулу Шеннона можно получить на основе следующего мыслительного эксперимента. Пусть есть программа-генератор, которая на экране дисплея может демонстрировать любую букву некоторого алфавита, который состоит из букв.

 

ai a1 a2 a3 ... an
pi p1 p2 p3 ... pn

 

Генерирование осуществляется соответственно заданным законам распределения. Каждая из букв появляется на экране согласно с вероятностью ее появления pi. За экраном дисплея ведется наблюдение: пусть на экране появилось m букв (m – довольно большое число, значительно больше чем ). Если интересует буква ai, то она на экране появится приблизительно раз. Каждое появление на экране буквы ai дает по формуле (1.7) количество информации, которая равняется , всего (за все ее появления) на экране будет получено битов информации. Общее количество информации, которое необходимо просуммировать после демонстрации всех m букв, равняется

.

На одну букву в среднем приходится:

(1.10)

Из этой формулы, как частный случай, получается формула Хартли (1.6). Действительно, если каждое состояние системы является равновероятным, т.е. , то энтропия системы будет максимальной и равняется: .







Дата добавления: 2015-09-15; просмотров: 394. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Растягивание костей и хрящей. Данные способы применимы в случае закрытых зон роста. Врачи-хирурги выяснили...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия