Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Мера Гудмена и Краскала





 

Коэффициенты корреляции для анализа данных порядкового (рангового) уровня. Для начала введем обозначения:

количество категорий переменной A;

количество категорий переменной B.

Для примера возьмем какую-нибудь пару наблюдений, одно из которых принадлежит ячейке i1, j1, т.е. имеет категорию i1 переменной A и категорию j1 переменной B, а второе измерение – из ячейки i2, j2.

Порядковые меры связи – это всегда простые функции от следующих четырех величин:

S – общее число пар наблюдений, для которых либо одновременно i1 > i2 и j1 > j2, либо, наоборот, i1 < i2 и j1 < j2, т.е. когда ранги пар измерений совпадают;

D – общее число пар наблюдений, для которых либо i1 > i2 и j1 < j2, либо i1 < i2 и j1 > j2, т.е. когда ранги пар измерений не совпадают;

Та – общее число пар наблюдений, для которых i1 = i2;

Tb – общее число пар наблюдений, для которых j1 = j2.

Когда между переменными A и B существует сильная связь, число S становится большим, а число D – малым.

Меры ранговой корреляции γ – Гудмена и Краскала, τ – Кендалла и d – Сомерса различаются только способом нормирования разности “S – D”.

Мера γ Гудмена и Краскала (предложена в 1954 г.):

Мера γ Гудмена и Краскала – это разность между вероятностями “правильного” и “неправильного” порядка для двух наблюдений, взятых наугад при условии, что совпадающих рангов нет.

 

γ Гудмена и Краскала изменяется в интервале от –1 до + 1:

в общем случае при отсутствии зависимости между А и В, γ обращается в 0, однако, не всегда, если γ = 0, то А и В независимы.

Пример вычислений приведен на рис. 4.

Рис. 4. Пример таблицы для вычисления меры γ Гудмена и Краскала

 

Для вычисления S => последовательно перебираются все ячейки, с умножением их частоты на суммарную частоту того блока ячеек, которые лежат ниже и правее следующей выбранной ячейки.

На рис. 4 частота “13” в ячейке (1,1) должна умножаться на частоту выделенного прямоугольника 2x3 (она равна: 24+28+34+8+15+24=133).

Совокупность таких (i – 1)(j – 1) перекрестных произведений и есть S (рис. 5).

Рис. 5. Таблицы для вычисления величины S

 

S = 13 х (24+28+34+8+15+24) + 13 х (28+34+15+24) + 12 х (34+24) + 4 х (8+15+24) +
+ 24 х (15+24) + 28 х (24) = 5534

Величина D => вычисляется совершенно так же, только частота в каждой ячейке умножается на суммарную частоту блока, расположенного ниже и слева (рис. 6).

Рис. 6. Таблицы для вычисления величины D

 

Отсюда D = 22 х (4+24+28+3+8+15) + 12 х (4+24+3+8) + 13 х (4+3) + 34 х (3+8+15) +
+ 28 х (3+8) + + 24 х (2) = 3627

Итак: γ = 5534 – 3627 = 0,208.

5534 + 3627

3.3. Проблема связанных рангов. Коэффициент τ (тау) Кендалла

Если значения признака имеют одинаковую оценку, то ранги, присваиваемые этим значениям, называются связанными. В таких случаях действует особое правило приписывания рангов. Напри­мер, если 12-й и 13-й сверху ранги 245 учащихся выпускного класса имеют средний балл 4,76, то обоим учащимся надо при­своить ранг, равный среднему двух рангов (12 + 13)/2 = 12,5. Или когда эксперт не может установить разницу в достоинствах почерка трех первых учащихся, он присваивает им всем среднее первых трех рангов, 2 = (1+2+3)/3.

Когда мы имеем дело со связанными рангами, ни уравнение rs, ни уравнение γне пригодны для вычисления тесноты связи между ран­гами.

Но способ вычислить корреляцию между изучаемыми признаками существует.

Ранговый коэффициент корреляции Кендалла τ может использоваться для измерения взаимосвязи между качественными и количественными признаками, характеризующими однородные объекты и ранжированные по одному принципу.

Коэффициент ранговой корреляции Кенделла – мера связи, основанная на числе совпадений или инверсий в ранжировках статистических признаков Х и Y.

Расчет данного коэффициента выполняется в следующей последовательности:

1) значения Х ранжируются в порядке возрастания или убывания;

2) значения У располагаются в порядке, соответствующем значениям Х;

3) для каждого ранга У определяется число следующих за ним значений рангов, превышающих его величину. Суммируя, таким образом, числа, определяют величину Р как меру соответствия последовательности рангов по Х и У. Она учитывается со знаком плюс;

4) для каждого ранга У определяется число следующих за ним рангов, меньших его величины. Суммарная величина обозначается через Q и фиксируется со знаком “–”;

5) определяется сумма баллов по всем членам ряда.

Ранговый коэффициент Кендалла определяется по формуле

 

,

 

где n – число наблюдений; S – сумма разностей между числом последовательностей и числом инверсий по второму признаку S = PQ.

Пусть восьми испытуемым присвоены разные ранги по признакам Х и Y.

Расчет данного коэффициента выполняется следующим образом.

1. Значения Х ранжируются в порядке возрастания или убывания.

2. Значения Y располагаются в порядке, соответствующем значениям Х.

3. Для каждого ранга Y определяется число следующих за ним значений рангов, превышающих его величину. Суммируя таким образом числа, определяем величину Р как меру соответствия последовательностей рангов по Х и Y и учитываем со знаком +.

4. Для каждого ранга Y определяется число следующих за ним рангов, меньших его величины. Суммарная величина обозначается через Q и фиксируется со знаком –.

5. Определяется сумма баллов по всем членам ряда.

Пример вычисления коэффициента тау Кендалла – τ (1 обозначает наивысший ранг) приведен в табл. 13.

 

Таблица 13

Пример вычисления коэффициента тау Кендалла

 

Испытуемый Лицо Х – ранг первого признака Y – ранг второго признака Совпадения Инверсии
  А        
  С        
  В        
  Н        
  Е F D        
  G        
n=8       Р=21 Q=7

 

Р = 5+6+5+3+1+0+1+1+0=21

Q = 2+0+0+1+2+2+0+0=7

 

.

 

Как правило, коэффициент Кендалла меньше коэффициента Спирмена. При достаточно большом объеме совокупности значения коэффициентов Спирмена и Кендалла имеют следующую зависимость

 

τ = 2/3 rs.

 

3.4. Множественный коэффициент ранговой корреляции (коэффициент конкордации) – W

Множественная (общая, совокупная) корреляция – корреляционная зависимость переменной от ряда факторов (варьирующих признаков).

Множественный коэффициент ранговой корреляции W (коэффициент конкордации) – определение тесноты связи между произвольным числом ранжированных признаков.

Он используется для измерения степени согласованности двух или нескольких рядов проранжированных значений переменных.

 

W = ,

 

где К – число переменных,

N – число ранжируемых объектов,

S – отклонение суммы квадратов рангов от средней квадратов рангов ,

а – среднее суммы рангов (табл. 14).

 

Таблица 14

Пример вычисления множественного коэффициента W

Респондент (объекты) Ранг признаков Σ рангов в строках Квадрат суммы
А В С
1- й          
2- й          
3- й          
4- й          
5- й          
N =5 - - - а=45  

 

 

 







Дата добавления: 2015-09-18; просмотров: 4152. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

В теории государства и права выделяют два пути возникновения государства: восточный и западный Восточный путь возникновения государства представляет собой плавный переход, перерастание первобытного общества в государство...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия