Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Базис и координаты вектора.





 

Определение 5.7. Линейной комбинацией векторов а1, а2,…,аn называется выражение вида: k1 a1 + k2 a2 +…+ kn an, (5.1)

где ki – числа.

 

Определение 5.8. Векторы а1, а2,…,аn называются линейно зависимыми, если найдутся такие числа k1, k2,…, kn, не все равные нулю, что соответствующая линейная комбинация векторов равна нулю, т.е. k1 a1 + k2 a2 +…+ kn an = 0. (5.2)

Если же равенство (5.2) возможно только при всех k i = 0, векторы называются линейно независимыми.

 

Замечание 1. Если система векторов содержит нулевой вектор, то она линейно зависима.

 

Замечание 2. Если среди n векторов какие-либо (n -1) линейно зависимы, то и все n векторов линейно зависимы.

 

Замечание 3. Необходимым и достаточным условием линейной зависимости двух векторов является их коллинеарность.

 

Определение 5.9. Векторы называются компланарными, если они лежат либо в одной плоскости, либо в параллельных плоскостях.

 

Замечание 4. Необходимым и достаточным условием линейной зависимости трех векторов является их компланарность.

 

Замечание 5. Любые четыре вектора в трехмерном пространстве линейно зависимы.

 

Определение 5.10. Два линейно независимых вектора на плоскости (или три линейно независимых вектора в пространстве) образуют базис, если любой вектор плоскости (пространства) может быть представлен в виде их линейной комбинации. Числовые коэффициенты этой линейной комбинации называются координатами данного вектора в рассматриваемом базисе:

если a, b, c базис и d = k a + m b + p c, то числа k, m, p есть координаты вектора d в базисе a, b, c.

 

Свойства базиса:

  1. Любые два неколлинеарных вектора образуют базис на плоскости, а любые три некомпланарных вектора – базис в пространстве.
  2. Разложение данного вектора по данному базису единственно, т.е. его координаты в данном базисе определяются единственным образом.
  3. При сложении двух векторов их координаты относительно любого базиса складываются.
  4. При умножении вектора на число все его координаты умножаются на это число.

 

Определение 5.11. Проекцией вектора АВ на ось u называется длина направленного отрезка А/В/ оси u, где А/ и В/ - основания перпендикуляров, опущенных из точек А и В на ось u.

Обозначение: прu а.

 

Свойства проекции:

  1. Прu a = | a | cosφ, где φ – угол между а и осью u.
  2. При сложении двух векторов их проекции на любую ось складываются.
  3. При умножении вектора на число его проекция на любую ось умножается на это число.

 

Замечание. Свойства 2 и 3 назовем линейными свойствами проекции.

 

Рассмотрим декартову систему координат, базис которой образуют в пространстве три попарно ортогональных единичных вектора i, j, k. Тогда любой вектор d может быть представлен в виде их линейной комбинации:

d = X i + Y j +Z k. (5.3)

 

Определение 5.12. Числа X, Y, Z называются декартовыми координатами вектора d.

 

Замечание. Декартовы координаты вектора равны его проекциям на оси Ох, Оу и Оz декартовой системы координат.

 

Определение 5.13. Косинусы углов, образованных вектором о осями декартовой системы координат, называются его направляющими косинусами.

 

Свойства направляющих косинусов:

  1. X = | d | cos α;, Y = | d | cos β;, Z = | d | cosγ.
  2. , , .
  3. cos2α + cos2β + cos2γ = 1.

 







Дата добавления: 2015-09-18; просмотров: 358. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия