Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скалярное произведение векторов.





 

Определение 5.14. Скалярным произведением двух векторов называется произведение их модулей на косинус угла между ними:

ab = | a || b | cosφ. (5.4)

Обозначения скалярного произведения: ab, ( ab ), a·b.

 

Свойства скалярного произведения:

1. ab = | a | пра b.

 

Доказательство. По свойству проекции пра b = | b | cos φ;, следовательно, ab = | a | пра b.

 

2. ab = 0 a b. 3. ab = ba.

4. (k a) b = k(ab). 5. (a + b) c = ac + bc.

6. a 2 = aa = | a |2, где а 2 называется скалярным квадратом вектора а.

7. Если векторы а и b определены своими декартовыми координатами

a = {X1, Y1, Z1}, b = {X2, Y2, Z2}, (5.5)

то ab = X1X2 + Y1Y2 + Z1Z2.

(5.6)

Доказательство. Используя формулу (5.3), получим:

ab = (X1 i + Y1 j + Z1 k)(X2 i + Y2 j + Z2 k).

Используя свойства 4 и 5, раскроем скобки в правой части полученного равенства:

ab = X1X2 ii +Y1Y2 jj + Z1Z2 kk + X1Y2 ij +X1Z2 ik + Y1X2 ji + Y1Z2 jk + Z1X2 ki + Z1Y2 kj.

Но ii = jj = kk = 1 по свойству 6, ij = ji = ik = ki = jk = kj = 0 по свойству 2, поэтому

ab = X1X2 + Y1Y2 + Z1Z2.

 

8. cosφ = . (5.6)

Замечание. Свойства 2, 3, 4 доказываются из определения 5.14, свойства 5, 6 – из свойств проекции, свойство 8 – из свойства 7 и свойств направляющих косинусов.

 

Пример.

a = {1, -5, 12}, b = {1, 5, 2}. Найдем скалярное произведение векторов а и b:

ab = 1·1 + (-5)·5 + 12·2 = 1 – 25 + 24 = 0. Следовательно, векторы а и b ортогональны.

 

 

Лекция 6.

Векторное и смешанное произведение векторов, их основные свойства и геометрический смысл. Координатное выражение векторного и смешанного произведения. Условия коллинеарности и компланарности векторов.

 

Будем называть три вектора а,b,c, для которых определен порядок следования, тройкой (или упорядоченной тройкой) векторов.

 

Определение 6.1. Тройка некомпланарных векторов abc называется правой (левой), если после приведения к общему началу вектор с располагается по ту сторону от плоскости, определяемой векторами а и b, откуда кратчайший поворот от а к b кажется совершающимся против часовой стрелки (по часовой стрелке).

с с

 
 


b a

       
 
   


A b

abc – правая тройка abc – левая тройка

 

Замечание. В дальнейшем будем рассматривать только правые системы координат, т.е. системы, базисные векторы которых образуют правую тройку.

 







Дата добавления: 2015-09-18; просмотров: 385. Нарушение авторских прав; Мы поможем в написании вашей работы!




Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Демографияда "Демографиялық жарылыс" дегеніміз не? Демография (грекше демос — халық) — халықтың құрылымын...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия