Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Скалярное произведение векторов.





 

Определение 5.14. Скалярным произведением двух векторов называется произведение их модулей на косинус угла между ними:

ab = | a || b | cosφ. (5.4)

Обозначения скалярного произведения: ab, ( ab ), a·b.

 

Свойства скалярного произведения:

1. ab = | a | пра b.

 

Доказательство. По свойству проекции пра b = | b | cos φ;, следовательно, ab = | a | пра b.

 

2. ab = 0 a b. 3. ab = ba.

4. (k a) b = k(ab). 5. (a + b) c = ac + bc.

6. a 2 = aa = | a |2, где а 2 называется скалярным квадратом вектора а.

7. Если векторы а и b определены своими декартовыми координатами

a = {X1, Y1, Z1}, b = {X2, Y2, Z2}, (5.5)

то ab = X1X2 + Y1Y2 + Z1Z2.

(5.6)

Доказательство. Используя формулу (5.3), получим:

ab = (X1 i + Y1 j + Z1 k)(X2 i + Y2 j + Z2 k).

Используя свойства 4 и 5, раскроем скобки в правой части полученного равенства:

ab = X1X2 ii +Y1Y2 jj + Z1Z2 kk + X1Y2 ij +X1Z2 ik + Y1X2 ji + Y1Z2 jk + Z1X2 ki + Z1Y2 kj.

Но ii = jj = kk = 1 по свойству 6, ij = ji = ik = ki = jk = kj = 0 по свойству 2, поэтому

ab = X1X2 + Y1Y2 + Z1Z2.

 

8. cosφ = . (5.6)

Замечание. Свойства 2, 3, 4 доказываются из определения 5.14, свойства 5, 6 – из свойств проекции, свойство 8 – из свойства 7 и свойств направляющих косинусов.

 

Пример.

a = {1, -5, 12}, b = {1, 5, 2}. Найдем скалярное произведение векторов а и b:

ab = 1·1 + (-5)·5 + 12·2 = 1 – 25 + 24 = 0. Следовательно, векторы а и b ортогональны.

 

 

Лекция 6.

Векторное и смешанное произведение векторов, их основные свойства и геометрический смысл. Координатное выражение векторного и смешанного произведения. Условия коллинеарности и компланарности векторов.

 

Будем называть три вектора а,b,c, для которых определен порядок следования, тройкой (или упорядоченной тройкой) векторов.

 

Определение 6.1. Тройка некомпланарных векторов abc называется правой (левой), если после приведения к общему началу вектор с располагается по ту сторону от плоскости, определяемой векторами а и b, откуда кратчайший поворот от а к b кажется совершающимся против часовой стрелки (по часовой стрелке).

с с

 
 


b a

       
 
   


A b

abc – правая тройка abc – левая тройка

 

Замечание. В дальнейшем будем рассматривать только правые системы координат, т.е. системы, базисные векторы которых образуют правую тройку.

 







Дата добавления: 2015-09-18; просмотров: 385. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия