Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Смешанное произведение векторов.





Определение 6.4. Смешанным произведением векторов а, b и с называется результат скалярного умножения векторного произведения [ ab ] на вектор с.

Обозначение: abc = [ ab ] c.

Свойства смешанного произведения.

1) Смешанное произведение [ ab ] c равно объему параллелепипеда, построенного на приведенных к общему началу векторах a,b,c, если они образуют правую тройку, или числу, противоположному этому объему, если abc – левая тройка. Если a,b и с компланарны, то [ ab ] c = 0.

Доказательство.

а) Если a,b и с компланарны, то вектор [ ab ] ортогонален плоскости векторов а и b, и, следовательно, [ ab ] c. Поэтому [ ab ] c = 0.

в) Если a,b,c не компланарны, [ ab ] c = |[ ab ]|| c | = S·| c |cosφ, где φ – угол между с и [ ab ]. Тогда | c |cosφ – высота рассматриваемого параллелепипеда. Таким образом, [ ab ] c = V, где выбор знака зависит от величины угла между с и [ ab ]. Утверждение доказано.

Следствие. [ ab ] c = a [ bc ].

Действительно, обе части равенства представляют объем одного и того же переллелепипеда. Поэтому положение векторных скобок в смешанном произведении не важно, и в его обозначении скобки не ставятся: abc.

2) Если a = {Xa, Ya, Za}, b = {Xb, Yb, Zb}, c = {Xc, Yc, Zc}, то

abc = .

Доказательство. Используя координатную запись скалярного и векторного произведения, запишем:

[ ab ] c = (YaZb – YbZa) Xc + (XbZa – XaZb) Yc + (XaYb – XbYa)Zc = .

Пример 1. Найдем смешанное произведение векторов a = {-3, 2, -1}, b = {2, 1, 0}, c = {-1, 3, -1}. Для этого вычислим определитель, составленный из их коодинат:

следовательно, векторы компланарны.

 

Пример 2. Найдем объем пирамиды с вершинами в точках А(0, -3, -1), В(3, 3, 2),

С(1, 0, -3) и D(2, -1, 1).

Отметим, что объем пирамиды ABCD в 6 раз меньше объема параллелепипеда, построенного на векторах AB, AC и AD. Найдем координаты этих векторов:

AB = {3,6,3}, AC = {1,3,-2}, AD = {2,2,2}. Тогда AB AC AD =

Cледовательно, объем пирамиды равен 18:3 =6.







Дата добавления: 2015-09-18; просмотров: 390. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Эффективность управления. Общие понятия о сущности и критериях эффективности. Эффективность управления – это экономическая категория, отражающая вклад управленческой деятельности в конечный результат работы организации...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия