Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Для независимых случайных величин корреляционный момент 0 !





Системы случайных величин (n > 2)

Закон распределения случайной величины - полная ее характеристика.

F(x1, x2,.., xn) = P((X1 < x1) (X2 < x2)..(Xn < xn)) - функция распределения

f(x1, x2,.., xn) = - плотность распределения

F1(x) = F[x1, ]

Условная плотность распределения

f(x1,..,xk\ xk+1,..,xn) =

Для независимых случайных величин f(x1, x2,.., xn) = f(x1)..f(xn)

Вероятность попадания случайной точки (x1,.., xn) в пределы n - мерной области D:

P((x1, x2,.., xn) D) = dx1... dxn

Числовые характеристики системы нескольких случайных величин

1) n математических ожиданий m1, m2,..,mn

2) n дисперсий D1, D2,..,Dn

3) n(n-1) корреляционных моментов kij =

(при i = j) имеем дисперсии Di = kii = = Dx

Корреляционный момент описывается ковариационной (корреляционной) матрицей

[kij] = - симметричнаядиагональная матрица

[rij] = - нормированная ковариационная матрица

 

 

Двумерный нормальный закон распределения

Для двумерного закона (x1, x2) или (x,y) имеем

f(x,y) =

при r = 0 (то есть величины не коррелированы)

f(x,y) = = f(x)f(y)

То есть для нормального закона справедливо утверждение:

Если случайные величины некоррелированы, то они независимы.

Законы распределения, связанные с нормальным

1. - распределение

Если - случайная, нормально распределенная величина (0,1) математическое ожидание = 0, дисперсия = 1, то

=

Сумма квадратов случайных величин имеет - распределение.

2. Величина t = имеет t - распределение Стьюдента.

f(t) = , где Г(p) = dx - гамма -функция

 

 







Дата добавления: 2015-09-18; просмотров: 477. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия