Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Для независимых случайных величин корреляционный момент 0 !





Системы случайных величин (n > 2)

Закон распределения случайной величины - полная ее характеристика.

F(x1, x2,.., xn) = P((X1 < x1) (X2 < x2)..(Xn < xn)) - функция распределения

f(x1, x2,.., xn) = - плотность распределения

F1(x) = F[x1, ]

Условная плотность распределения

f(x1,..,xk\ xk+1,..,xn) =

Для независимых случайных величин f(x1, x2,.., xn) = f(x1)..f(xn)

Вероятность попадания случайной точки (x1,.., xn) в пределы n - мерной области D:

P((x1, x2,.., xn) D) = dx1... dxn

Числовые характеристики системы нескольких случайных величин

1) n математических ожиданий m1, m2,..,mn

2) n дисперсий D1, D2,..,Dn

3) n(n-1) корреляционных моментов kij =

(при i = j) имеем дисперсии Di = kii = = Dx

Корреляционный момент описывается ковариационной (корреляционной) матрицей

[kij] = - симметричнаядиагональная матрица

[rij] = - нормированная ковариационная матрица

 

 

Двумерный нормальный закон распределения

Для двумерного закона (x1, x2) или (x,y) имеем

f(x,y) =

при r = 0 (то есть величины не коррелированы)

f(x,y) = = f(x)f(y)

То есть для нормального закона справедливо утверждение:

Если случайные величины некоррелированы, то они независимы.

Законы распределения, связанные с нормальным

1. - распределение

Если - случайная, нормально распределенная величина (0,1) математическое ожидание = 0, дисперсия = 1, то

=

Сумма квадратов случайных величин имеет - распределение.

2. Величина t = имеет t - распределение Стьюдента.

f(t) = , где Г(p) = dx - гамма -функция

 

 







Дата добавления: 2015-09-18; просмотров: 477. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия