Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция распределения вероятностей





Функцию распределения вероятностей определяют как вероятность события, заключающегося в том, что наблюдаемая величина X меньше или равна допустимому ее значению x, то есть

Fx(x) = P (X x)

 

1) 0 £ Fx(x) £ 1 - < x <

2) Fx(- ) = 0; Fx() = 1;

3) Fx(x2) > Fx(x1) при x2 > x1

4) P(x1 < x £ x2) = F(x2) - F(x1)

Плотность распределения вероятности

- Производная от Fx(x).

fx(x)dx = P(x < x £ x + dx) - элемент вероятности (вероятность того, что случайная величина лежит в диапазоне между x и x + dx)

Свойства плотности вероятности:

 

1. f (x) ³ 0 - < x <

2. f(x)dx = 1

3. Fx(x) = f(u)du

4. f(x)dx = P(x1 < x £ x2)

Средние значения и момент случайных величин

= E[x] = M[x] = xf(x)dx -

математическое ожидание величины x - центр тяжести стержня

1. Первый начальный момент (начальный момент порядка n:

E[xn] = nf(x)dx)

2. Второй начальный момент (начальный момент второго порядка)

­­­­­ 2 = E[x2] = 2f(x)dx

в технике - усредненный по времени квадрат случайного напряжения

или тока. Средняя мощность (шума).

3. Центральные моменты - моменты разности случайной величины Х и ее математического ожидания, то есть начальные моменты центрированной случайной величины.

n E[ n] = n f(x)dx

Центральные моменты характеризуют разброс случайной величины

относительно среднего (математического ожидания).

Первый центральный момент n=1 равен 0

1 f(x)dx = f(x)dx - f(x)dx = f(x)dx = 0

Второй центральный момент n=2 - дисперсия

2x = 2 = 2 f(x)dx = 2 - ()2

x - стандартное или среднеквадратичное отклонение

Основные теоремы теории вероятности.

 







Дата добавления: 2015-09-18; просмотров: 411. Нарушение авторских прав; Мы поможем в написании вашей работы!




Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Studopedia.info - Студопедия - 2014-2025 год . (0.01 сек.) русская версия | украинская версия