Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Функция распределения вероятностей





Функцию распределения вероятностей определяют как вероятность события, заключающегося в том, что наблюдаемая величина X меньше или равна допустимому ее значению x, то есть

Fx(x) = P (X x)

 

1) 0 £ Fx(x) £ 1 - < x <

2) Fx(- ) = 0; Fx() = 1;

3) Fx(x2) > Fx(x1) при x2 > x1

4) P(x1 < x £ x2) = F(x2) - F(x1)

Плотность распределения вероятности

- Производная от Fx(x).

fx(x)dx = P(x < x £ x + dx) - элемент вероятности (вероятность того, что случайная величина лежит в диапазоне между x и x + dx)

Свойства плотности вероятности:

 

1. f (x) ³ 0 - < x <

2. f(x)dx = 1

3. Fx(x) = f(u)du

4. f(x)dx = P(x1 < x £ x2)

Средние значения и момент случайных величин

= E[x] = M[x] = xf(x)dx -

математическое ожидание величины x - центр тяжести стержня

1. Первый начальный момент (начальный момент порядка n:

E[xn] = nf(x)dx)

2. Второй начальный момент (начальный момент второго порядка)

­­­­­ 2 = E[x2] = 2f(x)dx

в технике - усредненный по времени квадрат случайного напряжения

или тока. Средняя мощность (шума).

3. Центральные моменты - моменты разности случайной величины Х и ее математического ожидания, то есть начальные моменты центрированной случайной величины.

n E[ n] = n f(x)dx

Центральные моменты характеризуют разброс случайной величины

относительно среднего (математического ожидания).

Первый центральный момент n=1 равен 0

1 f(x)dx = f(x)dx - f(x)dx = f(x)dx = 0

Второй центральный момент n=2 - дисперсия

2x = 2 = 2 f(x)dx = 2 - ()2

x - стандартное или среднеквадратичное отклонение

Основные теоремы теории вероятности.

 







Дата добавления: 2015-09-18; просмотров: 411. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Этапы творческого процесса в изобразительной деятельности По мнению многих авторов, возникновение творческого начала в детской художественной практике носит такой же поэтапный характер, как и процесс творчества у мастеров искусства...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Studopedia.info - Студопедия - 2014-2025 год . (0.008 сек.) русская версия | украинская версия