Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Методы оценивания параметров





Наиболее часто используются 3 метода:

1. метод максимального правдоподобия;

2. метод моментов;

3. оценивание по Байесу.

Мы будем рассматривать только метод максимального правдоподобия.

 

Метод максимального правдоподобия (предложен Фишером)

Пусть P(x; Q1, Q2,.., Qn) - плотность распределения случайной величины X, Qi - параметр функции распределения. Считается, что вид плотности распределения функции - известен. Пусть имеем выборку из n независимых наблюдений из одного и того же распределения. Совместную плотность при этом можно записать так

gn(X \ Q) = gn(x1, x2,..,xn \ Q) = f(x1 \ Q) f(x2 \ Q).... f(xn \ Q)

Совместное распределение наблюдений, рассматриваемое как функция неизвестного параметра Q, называется функцией правдоподобия (ФП) выборки.

gn(X \ Q) = f(x1 \ Q) f(x2 \ Q).... f(xn \ Q)

Те значения выборки Q, для которых функция правдоподобия достигает максимума (так как события x1, x2,..,xn - уже произошли, то они имеют максимальную вероятность, равную 1!), называются оценками максимального правдоподобия.

ОМП - оценки максимального правдоподобияобладаютследующими свойствами:

n оценки асимптотически несмещенные (! асимпто-тическая несмещенность ОМП вовсе не означает что оценки всегда не смещены);

n асимптотически нормальные;

n асимптотически эффективные.

Более удобно работать с логарифмической функцией правдоподобия. Переход к логарифмической функции правдоподобия возможен потому, что значения аргументов, максимизирующие функцию и ее логарифм - совпадают

(*) ln(X \ Q) = lnng(X \ Q) =

Если функция правдоподобия достаточно гладкая, то есть имеет 1-ую и 2-ую производные, то ее максимум ищется приравниванием нулю частных ее производных по каждому из параметров Qi.

Или, что то же самое,

(**)

Пример: оценивание параметров функции правдоподобия.

f(x,Q1, Q2) = Опыты независимы!!

g(Q1, Q2 \ x1, x2,..,xn ) = =

(***) lng = L =-nln(Q2 ) -

(****)

Решение системы (****) дает следующие оценки:

E[ ] = , где - дисперсия - параметр закона распределения

- выборочная дисперсия - несмещенная оценка дисперсии

- смещенная оценка параметра - дисперсии

В (***) первый член не влияет на положение максимума, так как - параметр масштаба, а не сдвига. Второй же член входит в L со знаком (-). Поэтому для максимизации функции правдоподобия необходимо минимизировать выражение , то есть сумму квадратов отклонений случайных величин от своего математического ожидания (от среднего). Это обстоятельство, по существу, - теоретическое обоснование метода наименьших квадратов.

МНК был разработан К. Гауссом в начале 19 века. Основное его достоинство - простота реализации и ясный физический смысл. МНК широко применяется в различных задачах, связанных с построением математических моделей. Параметры моделей подбираются таким образом, чтобы минимизировать сумму квадратов отклонений вычисленных по модели значений от наблюденных, и так далее (такая же задача ставится при обработке измерений).

 







Дата добавления: 2015-09-18; просмотров: 512. Нарушение авторских прав; Мы поможем в написании вашей работы!




Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...


Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия