Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Получение интервальных оценок





 

Доверительный интервал с заданной вероятностью накрывает теоретический параметр (истинное значение параметра).

Доверительный интервал вычисляется по данным из некоторой выборки. Фиксированная величина параметра заключена между границами интервала, называемыми доверительными пределами, с некоторой заданной степенью достоверности, называемой доверительной вероятностью.

 

Общая процедура получения интервальной оценки:

1. Некоторое вероятностное утверждение записывается в математических символах, содержащих рассматриваемый параметр ансамбля.

2. Аргумент преобразуется так, чтобы параметр ансамбля был заключён между статистиками, которые модно вычислить по выборке.

 

úú.1. Получение интервальной оценки для среднего (неизвестного) по ансамблю mx случайной величины , распределённой по нормальному закону. Используем выборочное среднее и выборочную дисперсию Sx2.

Известно, что статистика - подчиняется распределению Стьюдента. Поэтому можно сделать вероятностные утверждения относительно величины t:

1) ;

2) ;

 

3)

 

 

 

Если индексы n и b симметричны относительно t=0, то интервал по t симметричен.

 

Чтобы сделать площадь под кривой распределения вне интервала раной a/2 + a/2 = a, было положено b=1-n; таким образом b=1-a/2.

Таким образом

После того как получена выборка, и рассматриваются как фиксированные числа. Однако сам интервал является случайной переменной.

Симметричный доверительный интервал для среднего по ансамблю можно получить, преобразуя аргумент в с учётом равенства

Доверительная вероятность для интервала, заданного неравенством равна 1-a.

 

 

2. Если известна величина и известен какой либо (U) закон распределения случайной величины (чаще всего это нормальный закон т.к. из центральной предельной теоремы следует, что выборочное среднее подчиняется нормальному закону), то можно построить доверительные интервалы для mx.

.

Если известна, то

.

 

 

3. Доверительный интервал для дисперсии по ансамблю случайной величины можно найти, используя c2 распределение

4.

 

Известно, что величина (ni – число повторений xi) подчиняется c2 – распределению с (n-1) степенями свободы, (при ni=1),

Следовательно,

n=n-1.

Поэтому (подставив c2 в ) получаем

Преобразовав это выражение, получим

.

При ;

 

с доверительной вероятностью 1-a.

 

Аналогично можно рассмотреть другие средние по ансамблю, если известно распределение их выборочных оценок. Если такие распределения не известны, необходимо воспользоваться неравенством Чебышева.

 

Пример: Доверительные интервалы для среднего значения и дисперсии по ансамблю.

Дана выборка:

 

76,48 76,25
76,43 76,48
77,20 76,48
76,45 76,60

 

Х (см3)- определение объёма.

n=n-1=7

Для 95% вероятности и для симметричного интервала (1-a=0,95; a/2=0,025)

Находим t0,975=2,36

 

Симметричный доверительный интервал, согласно , определяется неравенством

с вероятностью 0,95.

Доверительный интервал для с a=0,05 имеет вид

 







Дата добавления: 2015-09-18; просмотров: 407. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

КОНСТРУКЦИЯ КОЛЕСНОЙ ПАРЫ ВАГОНА Тип колёсной пары определяется типом оси и диаметром колес. Согласно ГОСТ 4835-2006* устанавливаются типы колесных пар для грузовых вагонов с осями РУ1Ш и РВ2Ш и колесами диаметром по кругу катания 957 мм. Номинальный диаметр колеса – 950 мм...

Философские школы эпохи эллинизма (неоплатонизм, эпикуреизм, стоицизм, скептицизм). Эпоха эллинизма со времени походов Александра Македонского, в результате которых была образована гигантская империя от Индии на востоке до Греции и Македонии на западе...

Studopedia.info - Студопедия - 2014-2025 год . (0.011 сек.) русская версия | украинская версия