Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Получение интервальных оценок





 

Доверительный интервал с заданной вероятностью накрывает теоретический параметр (истинное значение параметра).

Доверительный интервал вычисляется по данным из некоторой выборки. Фиксированная величина параметра заключена между границами интервала, называемыми доверительными пределами, с некоторой заданной степенью достоверности, называемой доверительной вероятностью.

 

Общая процедура получения интервальной оценки:

1. Некоторое вероятностное утверждение записывается в математических символах, содержащих рассматриваемый параметр ансамбля.

2. Аргумент преобразуется так, чтобы параметр ансамбля был заключён между статистиками, которые модно вычислить по выборке.

 

úú.1. Получение интервальной оценки для среднего (неизвестного) по ансамблю mx случайной величины , распределённой по нормальному закону. Используем выборочное среднее и выборочную дисперсию Sx2.

Известно, что статистика - подчиняется распределению Стьюдента. Поэтому можно сделать вероятностные утверждения относительно величины t:

1) ;

2) ;

 

3)

 

 

 

Если индексы n и b симметричны относительно t=0, то интервал по t симметричен.

 

Чтобы сделать площадь под кривой распределения вне интервала раной a/2 + a/2 = a, было положено b=1-n; таким образом b=1-a/2.

Таким образом

После того как получена выборка, и рассматриваются как фиксированные числа. Однако сам интервал является случайной переменной.

Симметричный доверительный интервал для среднего по ансамблю можно получить, преобразуя аргумент в с учётом равенства

Доверительная вероятность для интервала, заданного неравенством равна 1-a.

 

 

2. Если известна величина и известен какой либо (U) закон распределения случайной величины (чаще всего это нормальный закон т.к. из центральной предельной теоремы следует, что выборочное среднее подчиняется нормальному закону), то можно построить доверительные интервалы для mx.

.

Если известна, то

.

 

 

3. Доверительный интервал для дисперсии по ансамблю случайной величины можно найти, используя c2 распределение

4.

 

Известно, что величина (ni – число повторений xi) подчиняется c2 – распределению с (n-1) степенями свободы, (при ni=1),

Следовательно,

n=n-1.

Поэтому (подставив c2 в ) получаем

Преобразовав это выражение, получим

.

При ;

 

с доверительной вероятностью 1-a.

 

Аналогично можно рассмотреть другие средние по ансамблю, если известно распределение их выборочных оценок. Если такие распределения не известны, необходимо воспользоваться неравенством Чебышева.

 

Пример: Доверительные интервалы для среднего значения и дисперсии по ансамблю.

Дана выборка:

 

76,48 76,25
76,43 76,48
77,20 76,48
76,45 76,60

 

Х (см3)- определение объёма.

n=n-1=7

Для 95% вероятности и для симметричного интервала (1-a=0,95; a/2=0,025)

Находим t0,975=2,36

 

Симметричный доверительный интервал, согласно , определяется неравенством

с вероятностью 0,95.

Доверительный интервал для с a=0,05 имеет вид

 







Дата добавления: 2015-09-18; просмотров: 407. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Особенности массовой коммуникации Развитие средств связи и информации привело к возникновению явления массовой коммуникации...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Studopedia.info - Студопедия - 2014-2025 год . (0.009 сек.) русская версия | украинская версия