Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Получение интервальных оценок





 

Доверительный интервал с заданной вероятностью накрывает теоретический параметр (истинное значение параметра).

Доверительный интервал вычисляется по данным из некоторой выборки. Фиксированная величина параметра заключена между границами интервала, называемыми доверительными пределами, с некоторой заданной степенью достоверности, называемой доверительной вероятностью.

 

Общая процедура получения интервальной оценки:

1. Некоторое вероятностное утверждение записывается в математических символах, содержащих рассматриваемый параметр ансамбля.

2. Аргумент преобразуется так, чтобы параметр ансамбля был заключён между статистиками, которые модно вычислить по выборке.

 

úú.1. Получение интервальной оценки для среднего (неизвестного) по ансамблю mx случайной величины , распределённой по нормальному закону. Используем выборочное среднее и выборочную дисперсию Sx2.

Известно, что статистика - подчиняется распределению Стьюдента. Поэтому можно сделать вероятностные утверждения относительно величины t:

1) ;

2) ;

 

3)

 

 

 

Если индексы n и b симметричны относительно t=0, то интервал по t симметричен.

 

Чтобы сделать площадь под кривой распределения вне интервала раной a/2 + a/2 = a, было положено b=1-n; таким образом b=1-a/2.

Таким образом

После того как получена выборка, и рассматриваются как фиксированные числа. Однако сам интервал является случайной переменной.

Симметричный доверительный интервал для среднего по ансамблю можно получить, преобразуя аргумент в с учётом равенства

Доверительная вероятность для интервала, заданного неравенством равна 1-a.

 

 

2. Если известна величина и известен какой либо (U) закон распределения случайной величины (чаще всего это нормальный закон т.к. из центральной предельной теоремы следует, что выборочное среднее подчиняется нормальному закону), то можно построить доверительные интервалы для mx.

.

Если известна, то

.

 

 

3. Доверительный интервал для дисперсии по ансамблю случайной величины можно найти, используя c2 распределение

4.

 

Известно, что величина (ni – число повторений xi) подчиняется c2 – распределению с (n-1) степенями свободы, (при ni=1),

Следовательно,

n=n-1.

Поэтому (подставив c2 в ) получаем

Преобразовав это выражение, получим

.

При ;

 

с доверительной вероятностью 1-a.

 

Аналогично можно рассмотреть другие средние по ансамблю, если известно распределение их выборочных оценок. Если такие распределения не известны, необходимо воспользоваться неравенством Чебышева.

 

Пример: Доверительные интервалы для среднего значения и дисперсии по ансамблю.

Дана выборка:

 

76,48 76,25
76,43 76,48
77,20 76,48
76,45 76,60

 

Х (см3)- определение объёма.

n=n-1=7

Для 95% вероятности и для симметричного интервала (1-a=0,95; a/2=0,025)

Находим t0,975=2,36

 

Симметричный доверительный интервал, согласно , определяется неравенством

с вероятностью 0,95.

Доверительный интервал для с a=0,05 имеет вид

 







Дата добавления: 2015-09-18; просмотров: 407. Нарушение авторских прав; Мы поможем в написании вашей работы!




Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...


Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Хронометражно-табличная методика определения суточного расхода энергии студента Цель: познакомиться с хронометражно-табличным методом опреде­ления суточного расхода энергии...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Влияние первой русской революции 1905-1907 гг. на Казахстан. Революция в России (1905-1907 гг.), дала первый толчок политическому пробуждению трудящихся Казахстана, развитию национально-освободительного рабочего движения против гнета. В Казахстане, находившемся далеко от политических центров Российской империи...

Виды сухожильных швов После выделения культи сухожилия и эвакуации гематомы приступают к восстановлению целостности сухожилия...

Studopedia.info - Студопедия - 2014-2025 год . (0.014 сек.) русская версия | украинская версия