Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Построение линейной регрессионной модели с одной независимой переменной.





Одной из основных задач обработки данных является установление функциональной зависимости между переменными (параметрами) исследуемого процесса. Зачастую такие зависимости не очевидны, или слишком сложны. В таком случае ставится задача аппроксимации функциональной связи по эмпирическим данным. Эта задача решается с помощью регрессионного метода, который был назван известнейшим специалистом в области обработки данных Тьюки методом века.

Аппроксимацией называется подбор математического выражения, описывающего связь между экспериментальными данными. Само математическое выражение называют уравнением регрессии (регрессией), а соответствующую кривую - линией регрессии [1]. Простейшей регрессионной зависимостью является линейная. Если между переменными существует линейная функциональная связь, то результаты измерений будут концентрироваться около прямой, отражающей эту зависимость. Отклонения от прямой вызваны погрешностью измерений.

В случае двух переменных одна из них - X рассматривается как независимая и называется фактором или предиктором, вторая переменная Y является зависимой и называется откликом. Таким образом,уравнение Y относительно X - уравнение регрессии (говорят что Y регрессирует на X).

В случае линейной модели уравнение регрессии имеет вид:

, (1)

 

где b0 и b1 параметры модели;

e - остаточный член, обусловленный влиянием погрешностей измерений, случайных вариаций Y и погрешностью модели.

Погрешность модели возникает в случае замены какой - либо более сложной модели линейной зависимостью.

Оценки параметров модели (b0 и b1) находятся по результатам наблюдений.

Модель (1) является линейной первого порядка. Порядок модели определяется наивысшей степенью предиктора. Так модель

(2)

 

является линейной (относительно параметров b) третьего порядка..

В результате построения модели находятся оценки параметров b0 и b1 Уравнение регрессии, соответствующее уравнению (1), имеет вид

, (3)

где - расчетное или прогнозируемое значение Y для данного X.

МНК - оценки параметров получаются минимизацией суммы квадратов отклонений от «истинной» линии.

где n - число независимых наблюдений величин Хi и Yi

Получены следующие МНК оценки параметров b0 и b1[2]

 

, (5)

где - средние значения наблюдаемых величин X и Y. Подставляя оценки (5) в уравнение (3), можно вычислить «прогнозируемые» значения и найти остатки . Для правильно построенной модели сумма остатков равна 0.

 







Дата добавления: 2015-09-18; просмотров: 371. Нарушение авторских прав; Мы поможем в написании вашей работы!




Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...


Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Studopedia.info - Студопедия - 2014-2025 год . (0.012 сек.) русская версия | украинская версия