Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИЗОБРАЖЕНИЯ ПРОСТЕЙШИХ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ





1. Найти изображение единичной функции Хевисайда . Найдем , пользуясь определением:

,

при .

 

2. Найти изображение функции .

при .

0
3.Найти изображение функции .

В результате получим уравнение для нахождения :

, или

, откуда

.

Итак .

Аналогично можно получить следующие изображения:

, , .

4. Найти изображение функции .

0
0

5.Найти изображение функции .

0

так как интеграл Пуассона.

В таблице 1 приведены изображения некоторых простейших оригиналов

Таблица 1

 

 

СВОЙСТВА ПРЕОБРАЗОВАНИЯ ЛАПЛАСА

1с) Линейность.

Пусть функции являются оригиналами. Соответствующие им изображения обозначим . Тогда для любых комплексных чисел , функция также является оригиналом с изображением и справедливо равенство:

Заметим, что для существенно, что все , - оригиналы, так как, например, функция является оригиналом, а слагаемые и не являются.

Справедливо и обратное утверждение: если - изображения, то

Здесь также важно, что , - изображения, так как, например, является изображением, а слагаемые и не являются.

Используя свойство линейности, можно значительно проще найти изображения тригонометрических и гиперболических функций, например:

а) итак

.

 

С) Теорема подобия

Для любого имеет место соотношение

Доказательство: Пусть

Следствие:

 







Дата добавления: 2015-09-18; просмотров: 889. Нарушение авторских прав; Мы поможем в написании вашей работы!




Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия