Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИЗОБРАЖЕНИЯ ПРОСТЕЙШИХ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ





1. Найти изображение единичной функции Хевисайда . Найдем , пользуясь определением:

,

при .

 

2. Найти изображение функции .

при .

0
3.Найти изображение функции .

В результате получим уравнение для нахождения :

, или

, откуда

.

Итак .

Аналогично можно получить следующие изображения:

, , .

4. Найти изображение функции .

0
0

5.Найти изображение функции .

0

так как интеграл Пуассона.

В таблице 1 приведены изображения некоторых простейших оригиналов

Таблица 1

 

 

СВОЙСТВА ПРЕОБРАЗОВАНИЯ ЛАПЛАСА

1с) Линейность.

Пусть функции являются оригиналами. Соответствующие им изображения обозначим . Тогда для любых комплексных чисел , функция также является оригиналом с изображением и справедливо равенство:

Заметим, что для существенно, что все , - оригиналы, так как, например, функция является оригиналом, а слагаемые и не являются.

Справедливо и обратное утверждение: если - изображения, то

Здесь также важно, что , - изображения, так как, например, является изображением, а слагаемые и не являются.

Используя свойство линейности, можно значительно проще найти изображения тригонометрических и гиперболических функций, например:

а) итак

.

 

С) Теорема подобия

Для любого имеет место соотношение

Доказательство: Пусть

Следствие:

 







Дата добавления: 2015-09-18; просмотров: 889. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Шов первичный, первично отсроченный, вторичный (показания) В зависимости от времени и условий наложения выделяют швы: 1) первичные...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Условия приобретения статуса индивидуального предпринимателя. В соответствии с п. 1 ст. 23 ГК РФ гражданин вправе заниматься предпринимательской деятельностью без образования юридического лица с момента государственной регистрации в качестве индивидуального предпринимателя. Каковы же условия такой регистрации и...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Studopedia.info - Студопедия - 2014-2026 год . (0.007 сек.) русская версия | украинская версия