Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИЗОБРАЖЕНИЯ ПРОСТЕЙШИХ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ





1. Найти изображение единичной функции Хевисайда . Найдем , пользуясь определением:

,

при .

 

2. Найти изображение функции .

при .

0
3.Найти изображение функции .

В результате получим уравнение для нахождения :

, или

, откуда

.

Итак .

Аналогично можно получить следующие изображения:

, , .

4. Найти изображение функции .

0
0

5.Найти изображение функции .

0

так как интеграл Пуассона.

В таблице 1 приведены изображения некоторых простейших оригиналов

Таблица 1

 

 

СВОЙСТВА ПРЕОБРАЗОВАНИЯ ЛАПЛАСА

1с) Линейность.

Пусть функции являются оригиналами. Соответствующие им изображения обозначим . Тогда для любых комплексных чисел , функция также является оригиналом с изображением и справедливо равенство:

Заметим, что для существенно, что все , - оригиналы, так как, например, функция является оригиналом, а слагаемые и не являются.

Справедливо и обратное утверждение: если - изображения, то

Здесь также важно, что , - изображения, так как, например, является изображением, а слагаемые и не являются.

Используя свойство линейности, можно значительно проще найти изображения тригонометрических и гиперболических функций, например:

а) итак

.

 

С) Теорема подобия

Для любого имеет место соотношение

Доказательство: Пусть

Следствие:

 







Дата добавления: 2015-09-18; просмотров: 889. Нарушение авторских прав; Мы поможем в написании вашей работы!




Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Деятельность сестер милосердия общин Красного Креста ярко проявилась в период Тритоны – интервалы, в которых содержится три тона. К тритонам относятся увеличенная кварта (ув.4) и уменьшенная квинта (ум.5). Их можно построить на ступенях натурального и гармонического мажора и минора.  ...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Studopedia.info - Студопедия - 2014-2026 год . (0.01 сек.) русская версия | украинская версия