Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИЗОБРАЖЕНИЯ ПРОСТЕЙШИХ ЭЛЕМЕНТАРНЫХ ФУНКЦИЙ





1. Найти изображение единичной функции Хевисайда . Найдем , пользуясь определением:

,

при .

 

2. Найти изображение функции .

при .

0
3.Найти изображение функции .

В результате получим уравнение для нахождения :

, или

, откуда

.

Итак .

Аналогично можно получить следующие изображения:

, , .

4. Найти изображение функции .

0
0

5.Найти изображение функции .

0

так как интеграл Пуассона.

В таблице 1 приведены изображения некоторых простейших оригиналов

Таблица 1

 

 

СВОЙСТВА ПРЕОБРАЗОВАНИЯ ЛАПЛАСА

1с) Линейность.

Пусть функции являются оригиналами. Соответствующие им изображения обозначим . Тогда для любых комплексных чисел , функция также является оригиналом с изображением и справедливо равенство:

Заметим, что для существенно, что все , - оригиналы, так как, например, функция является оригиналом, а слагаемые и не являются.

Справедливо и обратное утверждение: если - изображения, то

Здесь также важно, что , - изображения, так как, например, является изображением, а слагаемые и не являются.

Используя свойство линейности, можно значительно проще найти изображения тригонометрических и гиперболических функций, например:

а) итак

.

 

С) Теорема подобия

Для любого имеет место соотношение

Доказательство: Пусть

Следствие:

 







Дата добавления: 2015-09-18; просмотров: 889. Нарушение авторских прав; Мы поможем в написании вашей работы!




Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...


Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...


Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...


Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

Studopedia.info - Студопедия - 2014-2026 год . (0.009 сек.) русская версия | украинская версия