Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ВВЕДЕНИЕ. на присуждение денежных поощрений





на присуждение денежных поощрений

для поддержки одаренных детей

в области физической культуры и спорта

Заявка на участие в конкурсе на присуждение денежных поощрений

для поддержки одаренных детей в области физической культуры и спорта

 

1. Заявитель______________________________________________________________

2. Фамилия, имя, отчество претендента на получение

денежного поощрения_____________________________________________________

3. Дата рождения ____________________

4. Место учебы ____________________________________________________________

5. Адрес __________________________________________________________________

6. Контактные телефоны: заявителя ___________________________________,

7. претендента __________________________________________________________

8. Образование ___________________________________________________________

9. Основные спортивные достижения за учебный год

3 лучших результата спортсмена за отчетный период (ранг соревнований, место и сроки проведения, результаты участия в соревнованиях)
       
       
       
       

 

 

Операционное исчисление и некоторые его приложения.

Математика-13: Учеб. пособ. / М.А. Евдокимов, Л.Г. Волкова; Самар. гос. техн. ун-т. Самара, 2007. 108 с.

Продолжает серию учебников по высшей математике, издаваемых на кафедре высшей математики и прикладной информатики. Предназначено для студентов, которые изучают раздел математики, посвященный операционному исчислению, и преподавателей, ведущих занятия по данной теме.

ISBN

 

Ил. 33. Библиогр.: 8 назв.

 

 

Печатается по решению редакционно-издательского совета

Самарского государственного технического университета

 

Рецензент д-р техн. наук Э.Я. Раппопорт

 

ISBN


ВВЕДЕНИЕ

 

В веке многие математики (в том числе у нас в России, например, М.Е.Ващенко - Захарченко и А.В.Летников) занимались так называемым символическим исчислением. В основе этого исчисления лежало построение математического анализа как системы формальных операций над символом ( -независимая переменная).

Например, - ная производная функции представляется как результат действия на символа , левая часть линейного дифференциального уравнения с постоянными коэффициентами

 

- как результат действия на символа.

.

 

Символическое исчисление оказалось довольно удобным для решения различных задач, связанных с линейными дифференциальными уравнениями. Его популяризации в веке в сильной мере способствовал английский инженер-электрик О.Хевисайд, который успешно использовал символическое исчисление в электротехнических расчетах.

Обоснование символичного или, как стали называть, операционного метода было дано лишь в двадцатых годах двадцатого столетия Бромвичем и Карсоном, связавшими этот метод с известным из теории функций комплексного переменного методом интегральных преобразований, которым с успехом пользовались Коши, Лаплас и другие математики. При этом символ (оператор) получил новое толкование, как комплексная переменная , а вместе с ним новую трактовку получил и сам операционный метод.

Операционный метод получил также иное строгое обоснование с помощью общей теории операторов, развитый в функциональном анализе, представленной в работах В.А.Диткина и А.П.Прудникова. В последнее время весьма оригинальную и простую трактовку операционного метода дал польский математик Ян Микусинский.

В данной работе излагаются основные положения операционного метода и особое внимание уделяется применению его для решения различных задач.







Дата добавления: 2015-09-18; просмотров: 446. Нарушение авторских прав; Мы поможем в написании вашей работы!




Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...


Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия